An Interactive, Graphical Simulator for Teaching Operating Systems
Extended Abstract
Joshua W. Buck and Saverio Perugini
Department of Computer Science
University of Dayton
Dayton, Ohio
joshua.buck993@gmail.com
saverio@udayton.edu

ABSTRACT
We demonstrate a graphical simulation tool for visually and interactively exploring the processing of a variety of events handled by an operating system when running a program. Our graphical simulator is available for use on the web by both instructors and students for purposes of pedagogy. Instructors can use it for live demonstrations of course concepts in class, while students can use it outside of class to explore the concepts. The graphical simulation tool is implemented using the React library for the fancy UI elements of the Node.js framework and is available as a web application at https://cpudemo.azurewebsites.net. The goals of this demonstration are to showcase the demonstrative capabilities of the tool for instruction, share student experiences in developing the engine underlying the simulation, and to inspire its use by other educators. An article describing this software simulation and demonstrating its pedagogical capabilities is available at https://arxiv.org/abs/1812.05160.

CCS CONCEPTS
• Social and professional topics → Computing education; • Applied computing → Computer-assisted instruction; • Software and its engineering → Process management; Scheduling.

KEYWORDS
Node.js; operating systems pedagogy; process scheduling; React library; semaphore processing.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foundation under Grant Numbers 1712406 and 1712404. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

The source of the underlying simulation engine is a course project designed by John A. Lewis in which students design and implement a program that simulates some of the job and CPU scheduling, and semaphore processing of a time-shared operating system.