SOME TYPICAL 1H CHEMICAL SHIFT VALUES:

1. Alkanes and alkyl groups:

 CH$_3$ – C δ 0.9 – 1.1 ppm
 C – CH$_2$ – C δ 1.3 ppm
 C – CH – C δ 1.4 ppm
 C – CH$_2$ – C = C δ 2.0 ppm
 CH$_3$ – C = C δ 1.7 ppm
 C – CH$_2$ – C = C δ 2.0 ppm
 CH$_3$ – C = C δ 1.8 ppm
 CH$_3$ – Ph δ 2.3 ppm
 CH$_3$ – C = O δ 2.1 ppm
 C – CH$_2$ – C = O δ 2.5 ppm
 CH$_3$ – C = C δ 1.7 ppm
 C – CH$_2$ – C = C δ 2.0 ppm
 CH$_3$ – C = C δ 1.8 ppm
 CH$_3$ – X δ 2.5 – 4 ppm
 (X = halogen)
 C – CH$_2$ – X δ 3 – 4 ppm
 (X = halogen)
 CH$_3$ – O δ 3 – 4 ppm
 C – CH$_2$ – O δ 3.5 – 4.5 ppm

2. Alkenes:

 C = C – H δ 4.5 – 6 ppm

3. Alkynes:

 C = C – H δ 2.5 ppm

4. Benzene and compounds containing benzene rings:

 Ph – H δ 7.15 ppm
 Various benzene ring H-atoms δ 7 – 8.5 ppm

5. Alcohols and Phenols:

 R – OH δ 2 – 5 ppm
 Ar – OH δ 4 – 7 ppm

6. Aldehydes:

 R – C = O δ 9 – 10 ppm

7. Carboxylic Acids:

 R – COOH δ 10 – 12 ppm

8. Amines:

 R – NH$_2$ δ 1.5 – 4 ppm
SOME TYPICAL 13C CHEMICAL SHIFT VALUES:

1. Alkanes and alkyl groups
 \((sp^3\) hybridized C):\n \[\begin{align*}
 &\text{C – C – C} & \delta & 0 – 30 \text{ ppm} \\
 &\text{C – C = C} & \delta & 20 – 40 \text{ ppm} \\
 &\text{C – C = O} & \delta & 20 – 40 \text{ ppm} \\
 &\text{C – C – X} & \delta & 20 – 40 \text{ ppm} \\
 &\text{(X = halogen)} \\
 &\text{C – C – O} & \delta & 50 – 75 \text{ ppm}
 \end{align*}\]

2. Alkynes (\(sp\)-hybridized C):
 \[\begin{align*}
 &\text{C = C} & \delta & 75 – 95 \text{ ppm}
 \end{align*}\]

3. Nitriles (\(sp\)-hybridized C):
 \[\begin{align*}
 &\text{N = C} & \delta & 100 – 120 \text{ ppm}
 \end{align*}\]

4. Alkenes (\(sp^2\) hybridized C):
 \[\begin{align*}
 &\text{C = C} & \delta & 100 – 150 \text{ ppm}
 \end{align*}\]

5. Benzene rings (\(sp^2\) hybridized C):
 \[\begin{align*}
 &\delta & 110 – 150 \text{ ppm}
 \end{align*}\]

6. Carboxylic Acids and Derivatives
 \((sp^2\) hybridized C):
 \[\begin{align*}
 &\text{-COOH, -COOR,} \\
 &\text{-CONR}_2, -\text{COCl} & \delta & 155 – 180 \text{ ppm}
 \end{align*}\]

7. Aldehydes (\(sp^2\) hybridized C):
 \[\begin{align*}
 &\text{R – C = O} & \delta & 180 – 210 \text{ ppm} \\
 &\text{H}
 \end{align*}\]

8. Ketones (\(sp^2\) hybridized C):
 \[\begin{align*}
 &\text{R – C = O} & \delta & 190 – 220 \text{ ppm} \\
 &\text{R’}
 \end{align*}\]