1. Define the following terms.

(a) \(m[f;I] \)

Solution. If \(I \) is an interval in \(\mathbb{R} \) and \(f \) is a bounded real-valued function defined on \(I \) then
\[
m[f;I] = \inf\{f(x) : x \in I\}.
\]

(b) subdivision of an interval

Solution. A subdivision of an interval \([a,b]\) is a finite set \(\sigma = \{x_0, x_1, \ldots, x_n\} \) where
\[a = x_0 < x_1 < \cdots < x_n = b.\]

(c) \(\int_a^b f \)

Solution. If \(a, b \in \mathbb{R} \) with \(a < b \) and \(f \) is a bounded real-valued function defined on \([a,b]\) then
\[
\int_a^b f \, dx = \inf_{\sigma} M[f;\sigma].
\]

(d) uniformly convergent sequence of functions

Solution. Let \(X \) be a set and let \((f_n) \) be a sequence of real-valued functions defined on \(X \). Let \(f : X \to \mathbb{R} \). Then \((f_n) \) converges uniformly to \(f \) if and only if for every \(\epsilon > 0 \) there is \(N \in \omega \) such that \(|f(a) - f_n(a)| < \epsilon \) for all \(n \geq N \) and all \(a \in X \).
In the following problems let \(a, b \in \mathbb{R} \) with \(a < b \) and let \(f, g : [a, b] \to \mathbb{R} \).

2. Prove that if \(f \in \mathbb{R}[[a, b]] \) and \(f(x) \) is never 0 on \([a, b] \) then \(1/f \in \mathbb{R}[[a, b]] \).

Solution. Let \(A \) be the set of points in \([a, b] \) at which \(f \) is discontinuous and let \(B \) be the set of points in \([a, b] \) at which \(1/f \) is discontinuous. Then \(A \) has measure 0 because \(f \in \mathbb{R}[[a, b]] \). If \(f \) is continuous at some \(x \in [a, b] \) then \(1/f \) is also continuous at \(x \) because \(f(x) \neq 0 \). Thus, if \(x \in B \) then \(x \in A \), or \(B \subseteq A \). It follows that \(B \) has measure 0 and that \(1/f \in \mathbb{R}[[a, b]] \).

3. Prove that if \(f \) is continuous on \([a, b] \) and \(\int_a^b |f| \, dx = 0 \) then \(f(x) = 0 \) for all \(x \in [a, b] \).

Solution. If \(f \) is continuous on \([a, b] \) then so is \(|f| \). We proved in homework that if a function \(g \) is integrable and nonnegative on \([a, b] \) and there is \(x \in [a, b] \) such that \(g(x) > 0 \) then \(\int_a^b g \, dx > 0 \). But \(|f| \) is integrable and nonnegative on \([a, b] \) and \(\int_a^b |f| \, dx = 0 \), so \(|f(x)| \) must be 0 for all \(x \in [a, b] \). Thus \(f(x) = 0 \) for all \(x \in [a, b] \).
4. Let \(A \) be a nonempty bounded subset of \(\mathbb{R} \) and let \(c \in \mathbb{R} \) with \(c > 0 \). Set \(cA = \{ cx : x \in A \} \). Prove that \(\sup cA = c \sup A \).

Solution. If \(x \in A \) then \(x \leq \sup A \). Thus \(cx \leq c \sup A \). It follows that \(\sup cA \leq c \sup A \). If \(x \in A \) then \(cx \leq \sup cA \). Thus \(x \leq (1/c) \sup cA \). It follows that \(\sup A \leq (1/c) \sup cA \) or \(c \sup A \leq \sup cA \). Therefore \(\sup cA = c \sup A \).

5. Prove that if \(f \in \mathcal{R}[a, b] \) and \(c \in \mathbb{R} \) with \(c > 0 \) then \(\int_a^b cf \, dx = c \int_a^b f \, dx \). You may assume that \(cf \in \mathcal{R}[a, b] \).

Solution.

\[
\int_a^b cf \, dx = \sup_{\sigma} \sum_{k=1}^{n} m(cf; I_k)^{|I_k|}
\]
\[
= \sup_{\sigma} \sum_{k=1}^{n} \left(\inf_{x \in I_k} cf(x) \right)^{|I_k|}
\]
\[
= \sup_{\sigma} \sum_{k=1}^{n} \left(c \inf_{x \in I_k} f(x) \right)^{|I_k|}
\]
\[
= \sup_{\sigma} c \sum_{k=1}^{n} m[f; I_k]|I_k|
\]
\[
= c \sup_{\sigma} \sum_{k=1}^{n} m[f; I_k]|I_k|
\]
\[
= c \int_a^b f \, dx
\]
6. Let $a \in \mathbb{R}$ and let $\langle a_n \rangle$ be a sequence in \mathbb{R} that converges to a. Prove that \{a_n : n \in \omega\} is a set of measure 0.

Solution. Let $\epsilon > 0$ and set $J = (a - \epsilon/4, a + \epsilon/4)$. Since $\lim_{n \to \infty} a_n = a$ there is $N \in \omega$ such that $a_n \in J$ for all $n \geq N$. For $k = 0, \ldots, N - 1$ set $I_k = (a_k - \epsilon/(4N), a_k + \epsilon/(4N))$. Set $I_N = J$. Then $\{a_n : n \in \omega\} \subseteq \bigcup_{k=0}^{N} I_k$ and $\sum_{k=0}^{N} |I_k| = \epsilon$.

7. Let E be a set and for every $n \in \omega$ let $f_n : E \to \mathbb{R}$. Let $f : E \to \mathbb{R}$ and let $c \in \mathbb{R}$. Prove that if $\langle f_n \rangle$ converges uniformly to f then $\langle cf_n \rangle$ converges uniformly to cf.

Solution. Let $\epsilon > 0$. There is $N \in \omega$ such that $|f(x) - f_n(x)| < \epsilon$ for all $n \geq N$ and all $x \in E$. If $c = 0$ then $cf_n(x) = 0$ for all $n \in \omega$ and all $x \in E$ and $cf(x) = 0$ for all $x \in E$. Obviously then $|cf(x) - cf_n(x)| < \epsilon$ for all $n \geq N$ and all $x \in E$. Assume that $c \neq 0$. Let $M \in \omega$ such that $|f(x) - f_n(x)| < \epsilon |c|$ for all $n \geq M$ and all $x \in E$. If $n \geq M$ and $x \in E$ then $|cf(x) - cf_n(x)| = |c||f(x) - f_n(x)| < |c|\epsilon/|c| = \epsilon$. So $\langle cf_n \rangle$ converges uniformly to cf.
8. Let \(f_n(x) = e^{-nx} \) for all \(n \in \omega \). Does \(\langle f_n \rangle \) converge uniformly on \([0, 1]\)? Why?

Solution. If \(0 < x \) then \(\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} e^{-nx} = 0 \). But \(\lim_{n \to \infty} f_n(0) = \lim_{n \to \infty} 1 = 1 \). Thus each \(f_n \) is continuous, but \(\lim_{n \to \infty} f_n \) is not continuous and the convergence cannot be uniform.

9. For every \(n \in \omega \) and every \(x \in [0, 1] \) set \(f_n(x) = \begin{cases} 2^n \sin(2^n \pi x) & 0 \leq x < 2^{-n} \\ 0 & 2^{-n} \leq x \leq 1 \end{cases} \). Set \(f(x) = 0 \) for all \(x \in [0, 1] \). Then \(\langle f_n \rangle \) converges to \(f \). Is the convergence uniform? Why?

Solution. Each \(f_n \) is continuous, and therefore integrable. But \(\lim_{n \to \infty} f_n = f \) is also continuous and integrable, so that tells us nothing. Let \(n \in \omega \).

\[
\int_0^1 f_n \, dx = \int_0^{2^{-n}} 2^n \sin(2^n \pi x) \, dx + \int_{2^{-n}}^1 0 \, dx \\
= \left[-\frac{1}{\pi} \cos(2^n \pi x) \right]_0^{2^{-n}} + 0 \\
= \frac{2}{\pi}
\]

But \(\int_0^1 f \, dx = \int_0^1 0 \, dx = 0 \). So \(\lim_{n \to \infty} \int_0^1 f_n \, dx = \frac{2}{\pi} \neq 0 = \int_0^1 (\lim_{n \to \infty} f_n) \, dx \) and the convergence is not uniform.