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ABSTRACT 

This paper describes a four-step method to analyze the utility bills and weather data from 

multiple buildings to target and measure the effectiveness of energy efficiency opportunities. The 

first step is to create a three-parameter change-point regression model of energy use versus 

weather for each building and type of energy.  The three model parameters represent weather 

independent energy use, the building heating or cooling slopes and the building balance-point 

temperature.  The second step is to drive the models with typical meteorological year (TMY2) 

weather data to determine Normalized Annual Consumption (NAC) for each type of energy.  

The third step is to create a sliding NAC with each set of 12 sequential months of utility data.  

The final step is to benchmark the NACs and coefficients of multiple buildings to identify 

average, best and worst energy performers, and how the performance of each building has 

changed over time.  The method weather normalizes energy use, prioritizes buildings for specific 

energy-efficiency retrofits, and tracks weather-normalized changes in energy use.  This paper 

describes the method, and then demonstrates the method through a case study analysis of energy 

use data from 14 Midwestern hospitals. 

 

Introduction  

This paper describes a four-step method to analyze the utility bills and weather data from 

multiple buildings to target specific energy efficiency opportunities.  The method identifies 

buildings with the greatest energy saving opportunities from a broader group of buildings, and 

helps identify the best type of energy efficiency opportunity for each building.  Further, it 

quantifies how weather-normalized energy use changes over time so that the effectiveness of 

energy-efficiency efforts can be measured.  Thus, it is able to derive actionable information from 

simple utility bills.  

The method of regressing utility billing data against weather data presented here builds 

upon the PRInceton Scorekeeping Method, PRISM [1], with a few important differences.  First, 

the method presented here uses change-point models [2, 3] instead of the variable-base degree-

day models used by PRISM.  Second, this method uses TMY2 data, rather than an average of 10 

years of data, as ‘typical’ weather.  The interpretation of regression coefficients, also builds on 

early work by Goldberg and Fels [4] and by Rabl [5], Rabl et al. [6] and Reddy [7].  Principle 

differences between this work and the aforementioned papers are that this work seeks to use 

inverse modeling proactively to identify energy saving opportunities rather than retroactively to 

measure energy savings, and this work tracks building performance using continuous sliding 

analysis rather than simple pre and post-retrofit comparisons.  
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Overview of the Method 

The first step of the method is to create statistical three-parameter models of electricity 

and fuel use as functions of outdoor air temperature.  We call these models “energy signatures” 

since they summarize a building’s energy use characteristics.  The three statistical-derived 

coefficients represent a building’s weather-independent energy use, the balance-point 

temperature and the overall heating or cooling coefficient.   

The second step is to drive the energy signature models with typical weather data from 

TMY2 files [8] to determine energy use during a ‘normal’ weather year.  Building energy use 

during a ‘normal’ weather year is called the Normalized Annual Consumption (NAC). 

Comparison of actual and normal annual energy consumption clearly shows when high or low 

energy use is caused by unusually hot or cold weather, rather than by fundamental changes in the 

building energy systems.    

The third step is to derive an energy-signature model and NAC for each set of 12 

sequential months of utility billing data.  The resulting ‘sliding NACs’ show how weather-

normalized energy use changes over time.  Thus, NAC removes the noise associated with 

changing weather from the utility billing data so that the true energy using characteristics of the 

building can be identified. In addition, ‘sliding coefficients’ show how independent energy use, 

the balance temperature and the heating/cooling coefficient change over time.  Using sliding 

analysis, building energy performance is benchmarked against previous performance to track 

changes in overall energy use and identify the causes of the changes. 

The fourth step is to compare the NACs and coefficients of multiple buildings.  In this 

step, building energy performance is benchmarked against other buildings.  Comparison of 

NACs quickly identifies average, best and worst energy performers, even among buildings from 

different locations with different weather.  Further, comparison of model coefficients indicates 

the root cause of the energy performance.  For example, high NAC indicates high energy use, 

while comparative analysis of the model coefficients can indicate whether the high energy use 

was caused by high weather-independent energy use, indoor air temperature, a leaky building 

envelope or inefficient heating and air conditioning equipment. 

Benchmarking NACs of multiple buildings can also target energy efficiency efforts on 

those buildings with the greatest energy saving potential.  For example, buildings with high 

weather-independent electricity use are usually good targets for lighting retrofits.  Buildings with 

unusually high or low balance temperature are usually good targets for programmable 

thermostats or building control systems.  Buildings with high heating/cooling coefficients are 

good targets for envelope or high-efficiency space conditioning equipment retrofits.  This 

information is extremely useful when conducting energy assessments, or when choosing which 

building to assess, since these opportunities can often be identified in advance of the site visit. 

Finally, the benchmarking process quantifies the overall performance of a group of 

buildings, and tracks this overall performance over time.  Specialized software has been 

developed to automate these tasks and display results graphically as well as numerically. The 

software significantly reduces the effort required to derive this actionable information from the 

utility billing data. 
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Description of Data and Software 

The method described here uses monthly utility bills as the base energy consumption data 

because of their wide availability and accuracy.  However, the method is easily adapted to 

interval or sub-metered data.  In most cases, it is useful to normalize building energy use by floor 

area to promote accurate comparisons between buildings.  

The method uses both actual and typical weather data.  Actual average daily temperatures 

for 157 U.S. and 167 international cities from January 1, 1995 to present are available free-of-

charge over the internet from the University of Dayton Average Daily Temperature Archive [9].  

The average daily temperatures posted on this site are from the National Climatic Data Center 

Global Summary of the Day (GSOD) dataset and are computed from 24 hourly temperature 

readings. The ‘typical’ weather of a given site is derived from TMY2 data files [8], which are 

available free-of-charge over the internet from the National Renewable Energy Laboratory.  

TMY2 files contain typical meteorological year data derived from the 1961-1990 National Solar 

Radiation Data Base.  Each TMY2 files include 8,760 hourly values of solar radiation, ambient 

temperature, ambient humidity and wind speed that are representative of the 30 averages for the 

site.     

The work described here used the Energy Explorer C software [10], which automates the 

process while providing graphical and numerical results.  The software is interactive, allowing 

users to explore the multiple layers of information from plots of NAC distributions among 

multiple buildings to year-by-year views of energy-signature models using simple point-and-

click features. 

 

Step 1: Energy Signature Models 

The first step is to derive statistical energy signature models of each building’s fuel and 

electricity use.  In this analysis, the fuel and electricity use reported on the utility bills were first 

normalized by building floor area and by the number of days in each billing period.  Thus, the 

base unit used throughout this paper is Btu-mo/ft
2
-dy for fuel and kWh-mo/ft

2
-dy for electricity.  

To derive the energy signature models, fuel use and electricity use from utility bills are entered 

into the program with actual average daily temperature data.  Figure 1 shows seven years of 

monthly natural gas and electricity use data for Hospital 2. 

 

Figure 1. Seven years of Hospital 2 monthly natural gas use (a), and electricity use (b). 
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The program calculates the average temperature during each utility billing period.  The 

energy use and weather data are then regressed to derive energy-signature models for each type 

of energy use.  Figure 2 shows typical three-parameter heating (3PH) and three-parameter 

cooling (3PC) model for Hospital 2.  In these graphs, natural gas and electricity use are plotted 

on the vertical axes against outdoor air temperature on the horizontal axes.  The data show that 

fuel use is constant at high temperatures when there is minimal demand for space heating, but 

increases at low temperatures.  Similarly, electricity use is constant at low temperatures when 

there is minimal demand for space cooling, but increases at high temperatures.   

 

Figure 2. Hospital 2 fuel use (a) and electricity use (b) plotted against outdoor air 

temperature with three-parameter heating and cooling models. 

(a)                                                                 (b) 
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In a 3PH model, the model coefficients are the weather-independent fuel use (Fi), the 

heating change-point temperature (Tcph), and the heating slope (HS).  Using these coefficients, 

fuel use (F) can be estimated as a function of outdoor air temperature (Toa) using Equation 1.  

The superscript + indicates that the value of the parenthetic quantity is zero when it evaluates to 

a negative quantity. 

 

F =  Fi + HS (Tcph – Toa)
+
     (Equation 1) 

 

In a 3PC model, the model coefficients are the weather-independent electricity use (Ei), 

the cooling change-point temperature (Tcpc), and the cooling slope (CS).  Electricity use (E) can 

be estimated using Equation 2.  

 

E =  Ei + CS (Toa – Tcpc)
+
       (Equation 2) 

 

Interpretation of Coefficients 

A primary strength of this method is that the model coefficients have physical meaning. 

Thus, the coefficients can be interpreted to give insight into energy-efficiency opportunities. 

Fi and Ei represent weather-independent energy use.  In 3PH models, Fi is frequently for 

hot water or air reheat.  In 3PC models, Ei is frequently for lighting, fans, electrical equipment, 

and cooling interior zones. 

The heating/cooling slopes, HS and CS, represent a building’s overall energy response to 

decreasing or increasing outdoor air temperatures.  The slopes incorporate external heating and 

cooling loads as well as the efficiencies of the heating and cooling equipment.   The external 
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heating load is dominated by the sum of conductive losses through the building envelope and the 

heat loss to ventilation or infiltration air.  Similarly, the external cooling load is dominated by the 

sum of conductive heat gain through the building envelope and sensible heat gain to ventilation 

or infiltration air.  Solar and latent cooling loads are linearly related to outdoor air temperature, 

and are thus accounted for in these models. Thus, the external heating and cooling coefficients, 

HC and CC, are: 

 

HC = UA + V ρ cp  CC = UA + V ρ cp  (Equation 3) 

 

where U is the overall building envelope conductance, A is the envelope area, V is the 

ventilation or infiltration flow rate, ρ is the density of air and cp is the specific heat of air.   

The heating/cooling slopes, HS and CS, are the quotients of the external heating and 

cooling coefficients and the efficiency of the space heating/cooling equipment efficiency, ήh or  

ήc (Equation 4).  

 

HS = HC / ήh    CS = CC / ήc   (Equation 4) 

 

The balance-point temperature, Tb, represents the outdoor air temperature below or 

above which space conditioning begins.  Tb is a function of the thermostat set-point temperature, 

Tsp, the internal loads from electricity use, solar gain and people, Qi, and the external heating or 

cooling coefficients (Equation 5).  

 

Tbh = Tsp – Qi / HC  Tbc = Tsp – Qi / CC   (Equation 5) 

 

Thus, analyzing energy signature models enables specific problems or opportunities to be 

identified.  Further, changes in energy signature models indicate specific changes in building 

equipment or operation.  For example, Figures 3 and 4 illustrate how changes in building 

equipment or operation are reflected in 3PH and 3PC models. 

 

Figure 3. 3PH models changes with, (a) increased Tsp, (b) increased ήh, (c) increased BC, 

(d) increased Fi 
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Figure 4. 3PC model changes with, (a) increased Tsp, (b) increased ήc,  (c) increased HC, 

(d) increased Qi 

(a)                            (b)                               (c)                                (d) 
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Step 2: Normalize Annual Energy Consumption 

Utility bills indicate the actual energy consumption during a billing period, which, in 

most cases, is influenced by the weather. Therefore, assessing a building’s energy performance 

by simply examining utility billing data is difficult because billing energy consumption is 

affected by weather.  Similarly, it is difficult to compare the energy performance of buildings 

located in different climates by comparing utility billing data.  Both of these problems can be 

eliminated by driving energy signature models with “typical” weather from a single location.  

The resulting annual energy use is called the Normalized Annual Consumption, (NAC).  To 

calculate the NAC, the energy signature models developed in Step 1 are driven with typical 

weather data from TMY2 files. 

Figure 5 shows monthly actual and weather-normalized natural gas use over seven years 

for Hospital 2.  The actual consumption is represented by the continuous line and the normalized 

consumption is characterized by the dashed line. The differences between actual and normalized 

consumption are caused by abnormally warm or cold weather.  Thus, NAC represents a noise-

free signal of building energy performance by removing the effect of abnormal weather.  As 

such, NAC reveals the true energy characteristics of buildings, and allows comparison of 

building energy use between buildings in different climates and over time. 

 

Figure 5. Time trends of Hospital 2 monthly fuel use and weather-normalized fuel use.  
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Step 3: Sliding NAC Analysis 

Changes in a building’s energy characteristics can be compared by calculating the 

buildings’ NAC during sequential 12-month periods.  This is called a ‘sliding’ NAC analysis.  

To do so, an energy-signature model is created for each set of 12 sequential months, and then 

driven with typical weather from a TMY2 file to create a sequence of NACs.  Figure 6 shows 

how the building’s energy signature model and NAC are computed for sequential 12-month data 

periods over two years.  The sliding NAC analysis illustrates how the building’s fundamental 

energy use characteristics change over time.  When these changes are caused by energy 

conservation retrofits, this sliding analysis provides an accurate measurement of the energy 

savings.  

Figure 6. Graphical representation of sliding NAC  

 
 

To illustrate the power of the sliding NAC analysis, consider Figure 7 which shows 

results from a sliding analysis of Hospital 2 fuel use.  In Figure 7a, the dashed line is the actual 

annual consumption (AC) and the solid line is the NAC of natural gas over seven years.  At first, 

both AC and NAC decrease substantially indicating a successful energy efficiency measure.  

However, during subsequent years the AC remains constant while the NAC slowly increases.  

Thus, analysis of AC alone would miss this “take back affect” in which the effectiveness of the 

initial energy efficiency measure was diminished.   
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Figure 7. Time trends of fuel a) NAC and AC, b) NAC and HS, c) NAC and Tbh, and d) 

NAC and Fi for Hospital 2  
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More information can be obtained by analyzing the values of the model coefficients over 

time. For example, the initial decrease in natural gas NAC for this building may have been 

caused by a reduction in the external heating coefficient caused by increased space heating 

equipment efficiency or decreased ventilation air. However, Figure 7b shows that heating slope 

(HS) was about the same before and after the large decrease in NAC.  (The short term increase 

and decrease in balance temperature over this time interval was caused by time lag effects during 

changing NAC, and do not represent actual changes.) This indicates that the decrease was not 

caused by increased space heating equipment efficiency or decreased ventilation air.  Figure 7c 

shows a slight decline in balance temperature and Figure 7d shows a decrease in weather 

independent fuel use.  Thus, the natural gas savings were caused by a reduction in balance 

temperature and a reduction in weather-independent fuel use.  Disaggregation of the savings 

shows that about 1/3 of the savings were from the decrease in weather-independent fuel use and 

2/3 of the savings were from the lower balance temperature [11].  These changes could have 

resulted from reduced set-point temperatures, decreased hot water energy use or decreased air 

reheat.  This example demonstrates how sliding NAC and coefficient analysis can provide a lens 

through which a building’s fundamental energy performance can be understood. 

 

Step 4: Benchmarking NAC and Coefficients 

In the fourth step of this method, the NAC and the model coefficients are benchmarked 

against other buildings to identify best and worst energy performers.  One way to convey this 
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information is to plot NAC versus increase in NAC for multiple buildings. In this paper, change 

in NAC, or any other statistic, is always defined to be the increase, as shown in Equation 6. 

 

∆NAC = (NAC_n – NAC_1) / NAC_1   (Equation 6) 

 

For example, Figure 8a shows NAC on the horizontal axis and change in NAC on the 

vertical axis for 14 Midwestern hospitals.  Buildings on the right side of the chart are the biggest 

fuel users and buildings on the left are the lowest.  Buildings near the top of the chart have 

experienced the greatest increase in NAC, while the NACs of buildings near the bottom have 

decreased.  The mean NAC and change in NAC are shown as lines through the center of each 

distribution.     

This graph conveys a wealth of actionable information for energy managers or analysts.  

For example, on the horizontal axis, high energy buildings are targets for energy efficiency 

retrofits, while the low energy buildings to the left can serve as examples of what can be 

achieved.  Similarly, buildings with large energy increases near the top of the graph may be 

experiencing equipment malfunctions or inadvertent changes in operations, while buildings with 

declining energy use near the bottom of the graph are examples of improving energy efficiency.  

Mean NAC, drawn as a vertical line, defines the center of the distribution and provides a metric 

for defining “typical” performance. Mean change in NAC, drawn as a horizontal line, indicates 

the magnitude of change in the energy performance of the entire group of buildings, and 

measures the success of energy-efficiency efforts across all buildings.  

 

Figure 8.  a) Fuel NAC versus ∆∆∆∆NAC, and b) HS versus ∆∆∆∆HS for 14 hospitals. 
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Similar plots can be constructed for the model coefficients. As in the case of a single 

building, analysis of the model coefficients shows why and how NAC has changed.  For 

example, Figure 8b shows HS on the horizontal axis and change in HS on the vertical axis for 14 

Midwestern hospitals.  Buildings on the right have the largest heating slopes and are targets for 

building envelope and space conditioning equipment retrofits, while buildings on the left 

demonstrate best practices.  Similarly, buildings near the top have experienced significant 

deterioration in the building envelope or space conditioning equipment.  
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Case Study of Midwestern Hospitals 

The method is demonstrated in the following case study of 14 hospitals located in 

Chicago, IL and Milwaukee, WI. Building floor areas range from 202,428 ft² to 1,426,297 ft². 

The primary heating source for these buildings are natural gas fired boilers. The primary cooling 

sources for these buildings are electric centrifugal chillers. In addition to electric chillers, three 

buildings also have absorption chillers. This data set provides a good test for targeting energy 

efficiency and determining energy efficient changes.  

The base data were derived from monthly billing information from 1995 to 2008; 

however, the number of bills available varied from a minimum of 2 years to a maximum of 8 

years. Actual weather data were obtained from the Average Daily Temperature Archive [9].  All 

energy use data were area normalized using the respective building’s area. To determine NAC all 

energy signature models were driven with TMY2 data for Chicago, IL.  This process enables the 

energy performance of buildings in different locations and with billing data from different time 

periods to be accurately compared.   

R² values for 3PH energy signature models ranged from about 0.80 to 1.0 with a mean 

value of about 0.90.  R² values for 3PC energy signature models ranged from about 0.60 to 1.0 

with a mean value of about 0.90.  The relatively high R
2
 values show that the models explain 

most of the variation in energy use. Heating R² values are typically higher than cooling R² values 

because space heating represents a higher fraction of total natural gas use than space cooling 

represents of total electricity use.  

 

Multi-Site Electricity Use Comparisons 

Figure 9 shows multi-site comparisons of electricity NAC and 3PC model coefficients.  

In each case, the value of the NAC or coefficient is shown on the horizontal axis and the increase 

is on the vertical axis.  Inspection of the multisite NAC graphs quickly identifies best and worse 

overall energy performance across the sample. Similarly, inspection of the coefficient charts 

lends additional insight into best and worst independent and weather dependent building 

characteristics.  This information allows managers or analysts to target energy efficiency efforts 

on the most promising buildings, and on the most promising specific areas (independent, 

envelope-HVAC efficiency, or building temperature control) for each building.  The mean of the 

NAC or coefficients, and mean of the increase of coefficients are shown as dark lines. This 

allows managers or analysts to quantify the overall progress of energy efficiency initiatives. 
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Figure 9. Electricity (a) NAC versus ∆NAC, (b) Ei versus ∆Ei,  (c) CS versus ∆CS,  and (d) 

Tbc versus ∆Tbc for 14 Hospitals 

(a)                                                                 (b) 
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(c)                                                                 (d) 

 

Biggest Slop Increase 

 

Biggest Slope 

 

Biggest Slope Decrease 

 

Smallest Slope 

 

           

Biggest Tb Increase 

 
Biggest Tb  

 

Biggest Tb Decrease 

 

Smallest Tb 

 
 

 

Single-Site Electricity Use 

In Figure 9c, the hospital with the largest decrease in cooling slope is Hospital 6.  Figure 

10 shows time trends of NAC and cooling slope.  The correlation between cooling slope and 

NAC is clear; both reductions in NAC resulted from reductions in the cooling slope.  

Independent electricity use and balance temperature remain approximately constant.  The 

temporary instability in the slope coefficient is caused by a time delay in which the coefficient 

becomes unstable until a full year of energy use data with the retrofit is modeled. Decreasing 

cooling slope indicates an improvement in the building envelope or the energy efficiency of the 

cooling system.  In this case, both reduction in NAC were caused by chiller retrofits in which old 

chillers were replaced by high-efficiency chillers. Figure 11 shows 3PC models from before and 

after the second chiller retrofit, and clearly indicates the decrease in cooling slope.   
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Figure 10. Hospital 6 sliding NAC and cooling slope 
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Figure 11. 3PC models for years ending (a) 3/26/2007 and (b) 10/22/2007 
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Summary and Conclusions 

This paper describes a four-step method to analyze monthly utility billing and weather 

data to target energy efficiency initiatives in buildings.  The first step of the method is to create 

three-parameter energy use models.  The second and third steps are driving the models using 

TMY2 data to determine Normalized Annual Consumption (NAC), and creating a sliding NAC 

with each set of 12 sequential months of utility data.  The final step is to benchmark the NACs 

and coefficients of multiple buildings to identify average, best and worst energy performers.  The 

paper demonstrates the method through a case study of 14 Midwest hospitals.   

The most stable and informative parameter derived by the method is NAC.  In virtually 

all cases, a change in NAC indicates a real change in the energy performance of the building.  

When used in multisite analysis, comparing NAC and ∆NAC is an excellent method for targeting 

buildings with the greatest potential for energy efficiency improvements.   Further, the case study 

examples demonstrate that coefficient analysis is able to identify the cause of changes in NAC.  
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If used proactively, this information can identify energy saving opportunities due to equipment 

malfunction.  However, coefficient analysis is inherently less stable than NAC analysis.  Thus, 

experience and judgment must be used to interpret changes in coefficients.  In particular, time 

lag effects can cause instability in the coefficients which do not reflect actual changes in building 

energy performance.  Moreover, our preliminary experience suggests that in commercial 

buildings, slope and independent energy use are better indicators of real changes in buildings 

than balance-point temperature.  Future work seeks to improve our abilities to correctly interpret 

model coefficients and to further identify both the strengths and limitations of the method. 
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