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ABSTRACT 

Open tanks and exterior surfaces of process heating equipment lose heat to the surroundings via 

convection, radiation, and/or evaporation.  A practical way of reducing heat loss is by insulating 

or covering the surfaces.  This paper presents methods to quantify heat loss and energy savings 

from insulating hot surfaces and open tanks.  The methods include radiation and evaporation 

losses, which are ignored by simplified methods.  In addition, thermal mass, such as refractory, 

conveyor and racking equipment, acts as a heat sink and increases heating energy use in process 

heating applications. This paper presents lumped capacitance and finite-difference methods for 

estimating heat loss to thermal mass, and savings from reducing this loss. 

 

The methods described above have been incorporated in free software, and are demonstrated 

using case study examples.  The examples demonstrate the magnitude of the potential error from 

using simplified methods.   

 

INTRODUCTION 

This paper discusses and illustrates methods to quantify savings from insulating hot surfaces, 

covering open tanks and reducing thermal mass.  A companion paper, Energy Efficiency Process 

Heating: Managing Air Flow, discusses improving process heating energy efficiency by 

managing air flow. 

 

Process heating systems lose heat through the systems’ shell.  Heat is transferred through the 

shell by conduction, and then to the surroundings by convection and radiation.  This heat loss can 

be reduced by insulating hot surfaces.  Several methods exist to quantify the heat loss reduction 

from insulating hot surfaces.  Most methods consider the thermal resistance of the insulation, but 

many do not consider the reduction in convection coefficient due to a cooler surface and do not 

explicitly consider radiation heat loss. Because of these deficiencies, simplified methods 

frequently underestimate the benefits of adding insulation.  This paper describes a method to 

calculate energy savings from adding insulation, which increases the accuracy of the calculation 

by explicitly accounting for the reduction in convection due to decreased surface temperatures 

and radiation heat loss. 

 

Even more heat is lost from a process heating system if hot liquids are exposed to ambient air, 

such as in from a heated rinse tank, because evaporation heat loss takes place in addition to 

convection and radiation.  Evaporation heat loss from uncovered tanks is between 2 and 6 times 

greater than convection and radiation heat loss combined.  When an open heated tank is covered 
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with a lid or insulating floats, heat loss by convection, radiation, and most prominently 

evaporation is reduced.  This paper develops a method for calculating total heat loss from open 

tanks, and the benefits of covering or adding insulation to the tanks. 

 

In most process heating systems, some of the heat that could be absorbed by the product is 

absorbed by the structure of the oven/furnace or by the machinery used to transport the material 

into and out of the oven/furnace.  We define the effective thermal mass of a process heating 

system as the mass capacitance that absorbs heat that could otherwise be absorbed by the 

product.  The quantity of heat loss is dependent on the quantity of thermal mass and the 

frequency that the thermal mass is heated.  In continuous-flow heating systems, the thermal mass 

may be conveyors that enter the system at one temperature and exit the system at a higher 

temperature.  In batch heating systems, the thermal mass includes structures to transport the 

product into and from the system, and the interior surfaces of the oven/furnace.  Reducing the 

quantity of energy lost to thermal mass in a process heating system saves energy.  This paper 

develops a method to calculate savings from reducing energy lost to thermal mass. 

 

INSULATING HOT SURFACES 

Savings Calculation Methodology 

The following procedure describes how to calculate energy savings from insulating hot surfaces, 

while explicitly taking radiation and the dependence of the convection coefficient on geometry 

and surface temperature into account. The required input variables for this procedure are easily 

measured in the field.  They are the area, temperature, emissivity and geometry of the hot 

surface, the temperature of the air and surroundings, and the temperature inside the oven, furnace 

or pipe.   

 

To calculate heat loss savings, the heat loss from both the uninsulated surface and from the 

surface with the proposed insulation must be calculated.  The savings from adding insulation are 

difference between the uninsulated and insulated heat loss. 

 

Qsavings = Quninsulated – Qinsulated          (1) 

 

Hot surfaces lose heat to the surroundings via convection and radiation.  The equation for heat 

loss, Q, to the surroundings at Ta, from a hot surface at Ts, with area A is: 

 

Quninsulated = h · A · (Ts – Ta) + σ · A · ε · (Ts
4
 – Ta

4
)      (2) 

 

where h is the convection coefficient, σ is the Stefan-Boltzman constant (0.1714 x 10
-8

 Btu/ft
2
-

hr-R
4
), ε is the emissivity of the surface.  The emissivity of most materials is a function of their 

color.  Very light and shiny surfaces have emissivities of about 0.1; dark surfaces have 

emissivities of about 0.9. 

  

The value of the convection coefficient, h, depends on whether the air movement over the hot 

surface is forced, such as by a fan, or natural due to the buoyancy of warm air next to the surface 

compared to the cooler surrounding air. This paper considers only natural convection.  For warm 

surfaces, the natural convection coefficient is about 1.5 Btu/ft
2
-hr-F (Mitchell, 1983). However, 
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as the surface temperature increases, so does the buoyancy effect and convection coefficient.  To 

include this effect, various relations have been developed.  This method uses the relations from 

the ASHRAE handbook (ASHRAE Fundamentals, 1989). In this method, the value of the 

convection coefficient can be approximated as a function of the orientation of the surface and the 

temperature difference between the surface and the surrounding air.  The appropriate relation 

depends on whether the air flow is laminar or turbulent.  Dimensional approximations for 

determining whether the flow is laminar or turbulent are shown in Equation 3.  In these relations, 

L is the characteristic length (ft) and ∆T is temperature difference between the surface and the 

surrounding air (F). 

 

Laminar: L
3
  ∆T < 63 

Turbulent: L
3
  ∆T > 63         (3) 

 

After the nature of the flow is determined, the convection coefficient can be estimated using the 

relations in Equation 4 (ASHRAE Fundamentals, 1989).  In these relations, D is characteristic 

diameter (ft), B is tilt angle of the surface from horizontal, and h is convection coefficient 

(Btu/hr-ft
2
-F).   

 

Horizontal Surfaces Losing Heat Upwards: hlam = 0.27 · (∆T / L) 
0.25

;    htur = 0.22 · (∆T) 
0.33

       

Tilted/Vertical Surfaces: hlam = 0.29 · [∆T · (sin B) / L] 
0.25

; htur = 0.19 · [∆T · (sin B) / L] 
0.33

       

Horizontal Pipes and Cylinders: hlam = 0.27 · (∆T / D) 
0.25

;   htur = 0.18 · (∆T) 
0.33

       (4) 

 

Using these relations, Equation 2 can be solved for Quninsulated to estimate the current heat loss.  

 

Similarly, heat loss from the insulated surface can be calculated from:  

 

Qinsulated = h · A · (Ti – Ta) + σ · A · ε · (Ti
4
 – Ta

4
)      (5) 

 

where Ti is the temperature of the outside surface of the insulation. Unfortunately, in Equation 5, 

the values of Ti and h are not known.  To determine Ti and h, the first step is to determine the 

thermal resistance of the current wall, Rc, based on the temperature of the fluid inside the heating 

system, Tf, and the current surface temperature Ts.  Thermal resistance of the current wall 

includes both the conduction thermal resistance through the wall and the convection thermal 

resistance at the wall’s inner surface. 

 

Quninsulated = A · (Tf – Ts) / Rc          (6) 

 

Next, an equation can be written from a steady-state energy balance on the surface of the 

insulation: 

 

h · A · (Ti – Ta) + σ · A · ε · (Ti
4
 – Ta

4
) = A · (Tf – Ti) / (Rc +Ri)    (7) 

 

where Ri is the thermal resistance of the insulation.  The relations for convection coefficient as a 

function of the temperature difference between Ti and Ta form a second equation.  Thus, this 

system has two equations (Equation 4 and Equation 7) and two unknowns and can be solved to 

determine Ti and h. 
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One of the easiest ways to solve this system of nonlinear equations is successive substitution.  In 

the successive-substitution method, an initial value for Ti is estimated and used to determine the 

convection coefficient h.  The value for h is then substituted into Equation 4 to determine a new 

value of Ti.  This procedure is repeated until the value of Ti varies by only a small amount after 

each iteration.  The final values of Ti and h can then be substituted into Equation 5 to find 

Qinsulated.  The heat loss savings, Qsav is the difference between Quninsulated and Qinsulated.  This 

method has been incorporated into the free software HeatSim (www.engr.udayton.edu/udiac). 

 

The energy savings, Esavings, are the heat loss savings, Qsavings, divided by system efficiency, η. 

 

Esavings = Qsavings / η          (8) 

 

Simplified Method 

Many analyses use simplified methods to calculate savings from insulating hot surfaces.  Most of 

these simplified methods assume a constant convection coefficient and do not explicitly consider 

radiation.  For example, the simplified method below involves calculating a thermal resistance of 

a system’s shell, Rshell, by approximating a convection coefficient between the outer shell surface 

and ambient air, h, and finding the new shell thermal resistance when a layer of insulation is 

added.  The heat lost from the uninsulated surface, Quninsulated, is the heat transferred between the 

inner fluid and the outer shell surface, which also equals the heat flux between the outer shell 

surface and ambient air. 

 

Quninsulated = (Tf – Ts) · A / Rshell = h · A · (Ts – Ta)      (9) 

 

The thermal resistance of a system’s shell, Rshell, can be calculated in Equation 9.  The total 

thermal resistance is the sum of the thermal resistance of the shell and the thermal resistance of 

the convection coefficient: 

 

Rcurrent = Rshell + 1 / h          (10) 

 

Thus, the uninsulated heat loss is: 

 

Quninsulated = (Tf – Ta) · A / Rcurrent        (11) 

 

The thermal resistance of the insulated system would be the sum of the thermal resistance of the 

shell, Rshell, and the insulation, Ri.  Thus, the heat lost from the insulated surface, Qinsulated, would 

be written as: 

 

Qinsulated = (Tf – Ta) · A / (Rcurrent + Ri) = (Tf – Ta) · A / (Rnew)    (12) 

 

Equation 1 could then be used to calculate heat loss savings, Qsavings.  Or, more directly, the heat 

loss savings would be: 

 

Qsavings = (Tf – Ta) · A / (1 / Rcurrent  – 1 / Rnew)      (13) 
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Other Methods/Software 

3E Plus (DOE, 2003) is a widely-available simulation program that calculates savings from 

insulating hot surfaces.  The method used to calculate heat loss is not apparent from the 

software’s Help features. However, the primary input parameters in 3E Plus are process 

temperature (which is analogous to the fluid temperature, Tf, in this procedure), ambient 

temperature, wind speed, insulation material used, and surface geometry.  This indicates that a 

principle difference between 3E Plus and the method described here is that 3E Plus calculates 

surface temperature from the value of insulation input by the user, while the method described 

here directly asks for surface temperature as an input variable.  If the surface temperature can be 

accurately measured, which it typically can using an IR thermometer, then the method described 

here will be more accurate than the 3E Plus method.   

 

Comparison of Proposed and Simplified Methods 

Consider a rectangular-shaped heat treat oven with dimensions of 10 ft x 10 ft x 10 ft, an inside 

air temperature of 1,600 F, an external surface temperature of 250 F, and an outer surface 

emissivity of 0.9.  The combustion efficiency of the oven is 50% (Carpenter and Kissock, 2005).  

The oven is located in a room with air and surroundings at 70 F.  The oven is to be covered with 

a layer of 2-inch thick insulation with a thermal conductivity of 0.44 Btu-in/hr-ft
2
-F. 

 

The overall weighted convection coefficient, including both the vertical sides and the horizontal 

top of the oven was found to be 2.36 Btu/hr-ft
2
-F using Equations 3 and 4.  The energy savings 

calculations using the proposed method are as follows. The uninsulated heat loss is (Equation 2): 

 

Quninsulated = h · A · (Ts – Ta) + σ · A · ε · (Ts
4
 – Ta

4
)  

Quninsulated = 2.36 · 500 · (250 – 70) + 0.1714 x 10
-8

  · 500 · 0.9 · (250
4
 – 70

4
) = 233,031 Btu/hr 

 

The current thermal resistance of the oven including the internal convection coefficient and 

structure of the oven, but not external convection coefficient would be (Equation 6): 

 

Rc = A · (Tf – Ts) / Quninsulated 

Rc = 500 · (1,600 – 250) / 233,031 = 2.90 hr-ft
2
-F/Btu 

 

An energy balance on the surface (Equation 7) gives: 

 

h · A · (Ti – Ta) + σ · A · ε · (Ti
4
 – Ta

4
) = A · (Tf – Ti) / (Rc +Ri) 

h · 500 · (Ti – 70) + 0.1714 x 10
-8

  · 500 · 0.9 · (Ti
4
 – 70

4
) = 500 · (1,600 – Ti) / (2.90 + 4.55) 

 

Combining the above equation with Equations 3 and 4, the values for convection coefficient and 

insulation surface temperature are h = 2.06 Btu/hr-ft
2
-F and Ti = 163 F.  Thus the heat loss from 

the insulated surface would be (Equation 5): 

 

Qinsulated = h · A · (Ti – Ta) + σ · A · ε · (Ti
4
 – Ta

4
)  

Qinsulated = 2.06 · 500 · (1,600 – 70) + 0.1714 x 10
-8

  · 500 · 0.9 · (163
4
 – 70

4
) = 96,546 Btu/hr 

 

The heat loss and energy savings from adding insulation would be (Equation 1, Equation 8): 
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Qsavings = Quninsulated – Qinsulated = 233,031 Btu/hr – 96,546 Btu/hr = 136,485 Btu/hr 

Esavings = 136,485 Btu/hr / 50% = 272,970 Btu/hr 

 

The HeatSim output screen in Figure 1 shows the current heat loss from the furnace’s shell, the 

heat loss if it was insulated, and the heat loss savings using the proposed method. 

 

 
Figure 1.  HeatSim output screen for insulation application 

 

Using the simplified method and assuming the convection coefficient, including radiation, is 1.5 

Btu/ft
2
-hr-F (Mitchell, 1983), the energy savings from insulating the oven would be: 

 

Rshell  = (Tf – Ts) / [h · (Ts – Ta)] = (1600 – 250) / [1.5 (250 – 70)] = 5.0 Btu/ft-hr-F 

Rcurrent = Rshell + 1 / h = 5.0 + 1 / 1.5 = 5.67 Btu/ft-hr-F 

Ri = t / k = 2 / 0.44 = 4.55 Btu/ft-hr-F 

Rnew = Rcurrent + Ri = 5.67 + 4.55 = 10.22 Btu/ft-hr-F 

Qsavings = (Tf – Ta) · A / (1/Rcurrent - 1/Rnew) = (1,600 – 70) 500 (1/5.67 - 1/10.22) = 60,067 Btu/hr 

Esavings = 60,067 Btu/hr / 50% = 120,134 Btu/hr 

 

This is only 44% of the result obtained from the more thorough method developed here and 

incorporated into HeatSim.  The reason that the simplified method results in fewer savings is 

because it does not account for radiation effects and the dependence of the convection coefficient 

on the temperature of the surface.  The magnitude of the difference in savings between the 

proposed and simplified methods indicates the importance of using the proposed method.  
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COVERING HEATED TANKS 

Savings Calculation Methodology 

The total heat loss from the top of an open heated liquid tank is the sum of convection, radiation 

and evaporation heat loss from the tank. 

 

Qtank = Qconv + Qrad + Qevap         (14) 

 

The method for quantifying these losses follows from Incropera and DeWitt (1985).   

 

The value of the convection coefficient, h, for free convection from the top of a hot surface can 

be estimated by calculating the thermal conductivity, k, kinematic viscosity, ν, Prandl number, 

Pr, and Raleigh number, Ra, for the appropriate film temperature, Tf; then using the appropriate 

relation for the Nusselt number, Nu, depending on whether the flow is laminar or turbulent.  The 

film temperature is assumed to be the average temperature between the water temperature inside 

the tank, Tw, and ambient air temperature, Ta. 

 

Tf = (Tw + Ta) / 2          (15) 

 

The thermal conductivity, k, Prandl number, Pr, and kinematic viscosity, ν, of air near the 

surface is obtained from the following regressions derived from gas property tables. 

 

k (W/m-K) = [23.9886 + 0.0782  ·  Tf (C)] · 10
-3

        (16) 

Pr = 0.716956 - 0.000228  ·  Tf (C)        (17) 

ν (m
2
/s)= [13.90552 + 0.09424 · Tf (C)] · 10

-6
       (18) 

 

The Raleigh number, Ra, can be calculated as:  

 

Ra = [g · (Tw – Ta) · L
3
] / [Tf (K) · ν

2
]        (19) 

 

where g is the acceleration due to gravity and L is the characteristic length.  Characteristic 

length, L, is calculated from tank length, l, and tank width, w, as: 

 

L = (l · w) / [2 · (l + w)]         (20) 

 

The convection coefficient, h, can be calculated with the following equation. 

 

h = (k · 0.54 · Ra
1/4

) / L (Ra < 10
7
) 

h = (k · 0.15 · Ra
1/3

) / L (Ra > 10
7
)       (21) 

 

Convection heat loss, Qconv, can be calculated as: 

 

Qconv = h · l · w · (Tw – Ta)         (22) 

 

Radiation heat loss can be calculated using the terms of Stefan-Boltzmann constant, σ = 5.67 · 

10
-8

 W/m
2
-K

4
, emissivity, ε (about 0.96 for water), water temperature, Tw, and air temperature, 

Ta. 
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Qrad = ε · σ · l · w · [Tw
4
 (K) – Ta

4
 (K)]       (23) 

 

The binary diffusion coefficient, DAB, for water at atmospheric pressure is 0.26 · 10
-4

 m
2
/s.  From 

the steam tables, the regression equations for specific volume of water vapor, v, at the 

temperature of water in the tank, Tw, and ambient air temperature, Ta, are as follows. 

 

vTw (m
3
/kg) = e^[5.285152 – 0.06458115 · Tw (C) + 0.000172321 · Tw

2
 (C)]  (24) 

 

vTa (m
3
/kg) = e^[5.285152 – 0.06458115 · Ta (C) + 0.000172321 · Ta

2
 (C)]   (25) 

 

The mass transfer coefficient, hm, is calculated as follows. 

 

hm = h · DAB · [ν / (Pr · DAB)]
1/3

        (26) 

 

The mass of water evaporating from the tank, mw, is calculated as: 

 

mw = hm · (l · w) · [(1 / vTw) – (rh / vTa)]       (27) 

 

where rh is the relative humidity of ambient air.  From the steam tables, the regression equations 

for latent heat of vaporization, hfg, at the temperature of water in the tank, Tw, is: 

 

hfg (kJ/kg) = 2,503.863 – 2.443774 · Tw (C)       (28) 

 

The heat lost due to evaporation, Qevap, is the product of water mass evaporating from the tank, 

mw, and latent heat of vaporization, hfg. 

 

Qevap = mw · hfg          (29) 

 

A common practice in industry is to cover heated open tanks with spherical insulation floats.  

The surface area covered by a spherical insulation float with a diameter, dia, is: 

 

Afloat = π · dia
2
 / 4          (30) 

 

The surface area covered by a square with a side of length dia is: 

 

Asquare = dia
2
           (31) 

 

Thus the fraction of surface area, ffloat, covered by spherical floats in an open tank is about: 

 

ffloat = Afloat / Asquare = 0.79         (32) 

 

When insulation floats are placed on the top of the tank, we assume no evaporative heat is lost 

from the covered area.  We assume that heat loss from the uncovered area is the same as without 

floats. 
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To calculate the convection and radiation heat loss from the surface area of the floats, float 

surface temperature, Tfs, and convection coefficient, hfs, on the surface must be found.  To do so, 

an energy balance can be applied to the floats in which the sum of the radiation and convection 

energy flux from the float surface equals the conduction heat transfer flux through the float.  The 

conduction flux through the floats is the difference between the water temperature, Tw, and float 

surface temperature, Tfs, divided by the thermal resistance of the floats, Rfloat.  Equation 33 

demonstrates this energy balance. 

 

Q’conv + Q’rad = Q’cond 

hfs · (Tfs – Ta) + ε · σ · [Tfs
4
 (K) – Ta

4
 (K)] = (Tw – Tfs) / Rfloat    (33) 

 

HeatSim solves Equation 33 by choosing values for Tfs until the equation is balanced.  HeatSim 

uses Equations 15 through 21 to solve hfs for each chosen value of Tfs.  Equation 34 calculates 

the heat lost by the tank when insulated with floats, Qtank,ins.  This equation accounts for the heat 

lost by both the area covered with floats and the area not covered with floats. 

 

Qtank,ins = (Qconv + Qrad + Qevap) · (1 – ffloat) + {hfs · (Tfs – Ta) + ε · σ · [Tfs
4
 (K) – Ta

4
 (K)]} ·  

          · (l · w · ffloat) (34) 

 

The heat loss savings, Qsavings, is the difference between the heat lost by the tank when 

uninsulated, Qtank, and when insulated with floats, Qtank,ins. 

 

Qsavings = Qtank – Qtank,ins         (35) 

 

Savings Example 

For example, consider an open tank of dimensions 6 ft x 2 ft holding 158 F water.  The ambient 

air surrounding the tank has a temperature of 50 F and a relative humidity of 50%.  The tank is to 

be covered with balls with an R-value of 3 hr-ft
2
-F/Btu-in and a thickness (diameter) of 1.5 

inches.  The HeatSim output screen in Figure 2 shows that the current heat lost from the tank is 

13,807 Btu/hr, and would reduce to 3,321 Btu/hr if covered with insulation floats; which is a 

savings of about 10,485 Btu/hr, or 76%.  In addition, the current water lost from the tank is 10.8 

lb/hr, and would reduce to 2.2 lb/hr; which is a savings of about 8.6 lb/hr, or 80%. 

 



 10 

 
Figure 2.  HeatSim output screen for covering open tank with insulation balls 

 

Comparison of HeatSim and Experimental Results 

We compared the above HeatSim results to the following experimental results (Euro-Matic 

Plastics Inc.).  These results indicate that HeatSim’s estimates of energy and liquid loss are 

slightly conservative, but are certainly close enough for estimating savings.  Some of the 

deviation between HeatSim and experimental results may be attributed to the difference between 

the ambient conditions in the experiment, which were not published, and the ambient conditions 

assumed in the HeatSim simulation. 
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Table 1. Comparison of HeatSim and experimental results 

 Experimental HeatSim 

 Results Results 

Open Tank   

Energy loss (kW) 4.61 4.05 

Liquid loss (kg/h) 5.52 4.90 

With Balls   

Energy loss (kW) 1.31 0.97 

Liquid loss (kg/h) 0.46 1.00 

Percent Reduction   

Energy loss 72% 76% 

Liquid loss  92% 80% 

 

REDUCING THERMAL MASS  

Continuous Process Systems 

In continuous process heating systems, conveyors or other machinery that transport the material 

through the oven/furnace carry heat out of the oven/furnace and contribute to the heating load.  

Although the interior walls and ceiling also absorb heat, they remain warm as long as the 

oven/furnace is in operation; thus, the quantity of heat absorbed by these components over time 

is typically negligible compared to other types of heat loss.  

 

Savings Calculation Methodology 

Conveyors in continuous heating systems often run continuously, even when not loaded with 

parts.  If so, a simple measure to reduce energy heat loss via thermal mass is to slow or stop the 

conveyor when not loaded.  Another simple savings measure is to decrease the thermal mass of 

the conveyor, if possible, by using a lighter material or narrowing the width of a conveyor belt. 

 

The energy lost to a conveyor in a continuous heating system, Qconv, is the product of conveyor 

velocity, V, mass per linear length, m, specific heat of conveyor material, Cpconv, and the 

temperature difference of the conveyor leaving, Tconv2, and entering, Tconv1 the system. 

 

Qconv = V · m · Cpconv · (Tconv2 – Tconv1)       (36) 

 

When the conveyor moves slowly, the temperature of the conveyor leaving the system, Tconv2, 

frequently approaches the interior temperature of the oven/furnace, and the temperature of the 

conveyor entering the system, Tconv1, approaches room temperature.  If conveyor velocity, V, or 

mass, m, were reduced, the energy savings would be the difference between energy absorbed by 

the conveyor before and after the change. 

 

Savings Example 

A brazing oven with a set-point temperature of 1,900 F has a stainless steel conveyor belt 

weighing 5 lbs/ft traveling 42 ft per hour.  The specific heat of stainless steel is 0.12 Btu/lb-F.   
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The conveyor was loaded with parts during about 30% of oven operating hours.  If the conveyor 

was slowed to 18 ft per minute when not loaded, total oven energy savings would be about: 

 

Qconv,1 = V1 · m · Cpconv · (Tconv2 – Tconv1) = 42 · 5 · 0.12 · (1900 – 70) = 46,116 Btu/hr 

 

Qconv,2 (avg) = [V1 · m · Cpconv · (Tconv2 – Tconv1)] · 30% + [V2 · m · Cpconv · (Tconv2 – Tconv1)] · 70% 

Qconv,2 (avg) = [42 ·5 ·0.12 ·(1900 – 70)] ·30% + [18 ·5 ·0.12 ·(1900 – 70)] ·70% = 27,670 Btu/hr 

 

Qconv,sav = 46,116 Btu/hr – 27,670 Btu/hr = 18,446 Btu/hr 

 

This is a savings of about 40% of the energy lost to the conveyor. 

 

Batch Systems 

Unlike continuous systems, the interior structure of batch ovens and furnaces absorb energy 

during the heating cycle.  Carts and racking that hold or transport the product also absorb energy.     

If the heat absorbing material is highly conductive, such as metal, the temperature is 

approximately uniform throughout the component.   However, if the heat absorbing material is 

less conductive, such as refractory, the temperature decreases from the outside to the inside of 

the material.  Finite-difference models can determine the temperature profile at the end of the 

cycle. The energy absorbed by the mass can then be determined from this profile. Energy savings 

can be realized if the quantity of thermal mass can be reduced.   

 

Savings Calculation Methodology 

To demonstrate the finite-difference method, consider a layer of fire brick that is exposed to 

interior of an oven on one side and insulated on the other (Figure 3).  The thermal mass is 

divided into eight layers.  Each layer is called a node and is assumed to have a uniform 

temperature. 

 

 
Figure 3.  Layer of thermal mass with temperature nodes 
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The thickness of each node, dx, is equal to the thickness of the entire layer, x, divided by 8. 

 

dx = x / 8            (37) 

 

The thermal resistance between the oven atmosphere and node 1, R1, is the sum of the 

convection and conduction thermal resistances.  The convection thermal resistance is the inverse 

of the product of convection coefficient, h, and the surface area, A.  The conduction thermal 

resistance is the distance between the center of node 1 and the surface, divided by thermal 

conductivity, k, and cross-sectional area, A. 

 

R1 = 1 / (h · A)  + dx / (2 · k · A)        (38) 

 

 

The thermal resistance between each consecutive node is the distance between each node, dx, 

divided by thermal conductivity, k, and the cross-sectional area, A.  If material properties of the 

thermal mass is constant throughout, the thermal resistances between each consecutive node are 

equal. 

 

R2 = R3 = R4 = R5 = R6 = R7 = R8 = dx / (k · A)      (39) 

 

From the First Law of Thermodynamics, the energy into each node, Ein, minus the energy out of 

each node, Eout, equals the change of energy stored in each node, ∆Estore. 

 

Ein – Eout = ∆Estore          (40) 

 

Figure 4 demonstrates the interaction between a node and the nodes above and below it in terms 

of temperatures, T, thermal resistances, R, and energy, E. 

 

 
Figure 4.  Finite difference analysis on temperature node 

 

The Ein and Eout terms in Equation 40 can be rewritten using the terms in Figure 4.  The change 

in energy stored at a node, ∆Estore, is the product of distance between the nodes, dx, cross-

sectional area, A, material density, ρ, material specific heat, Cp, and the difference between node 

T 

TN 

RS 

RN 

EN 

ES 

dx 

TS 
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temperature after the iterative step, T’, and current node temperature, T, all divided by the time 

period of iteration, dt.  Thus, Equation 40 can be rewritten as: 

 

(TN – T) / RN – (T – TS) / RS = [dx · A · ρ · Cp · (T’ – T)] / dt    (41) 

 

Rearranging Equation 41, the temperature after each iterative step, T’, can be calculated. 

 

T’ = dt · (TN – T) / (RN · dx · A · ρ · Cp) – dt · (T – TS) / (RS · dx · A · ρ · Cp) + T  (42) 

 

When T’ is calculated, it can be inserted into the T term in Equation 42 to calculate the next T’ 

value in the following time iteration.  This step must be repeated until enough time iterations 

have been performed to equal the time duration of a cycle.  The temperatures of each node at the 

end of the cycle are calculated by performing all time iterations. 

 

The total energy absorbed by the thermal mass during the cycle, QTM, can be calculated by 

summing the energy at all nodes relative to their energy before the cycle.  This calculation 

involves each node temperature at the end of the cycle, Tf, and at the beginning of the cycle, Ti.   

Equation 43 calculates the total energy absorbed by the thermal mass during the cycle, QTM. 

 

QTM = Σ dx · A · ρ · Cp · (Tf – Ti)        (43) 

 

Savings Example 

Consider a heat treat oven whose floor is mounted on rails so that it can be sled into and out of 

the oven.  The floor is 100 ft
2
 in area, and consists of fire bricks on top of a thick layer of 

insulation.  The bricks are laid vertically such that the firebrick floor is about eight inches thick.  

The density of firebrick is about 36 lb/ft
2
, the specific heat is about 0.25 Btu/lb-F, and the 

thermal conductivity is about 1.2 Btu-in/ft
2
-hr-F.  The heat treat cycle consists of raising the 

temperature to about 1,700 F for four hours, then decreasing the oven temperature by about 50 F 

per hour until the oven reaches 400 F. 

 

As an energy-savings measure, the 8-inch thick firebrick is replaced with 4-inch firebrick.  Using 

the methodology shown above, the temperature profile of 8-inch firebrick and 4-inch firebrick at 

the conclusion of the heating cycle is shown in Table 2. 

 

Table 2. Temperature profile of 8-inch and 4-inch thick firebrick after heat treat cycle 

 8-in thick 4-in thick 

T1 484 F 477 F 

  T2 591 F 569 F 

T3 674 F 631 F 

T4 736 F 662 F 

T5 782 F 

T6 813 F 

T7 832 F 

T8 841 F 
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Using Equation 43, the energy absorbed by the 8-inch firebrick after the cycle is 389,600 Btu, 

and the energy absorbed by the 4-inch firebrick is 154,400 Btu.  This is a savings of 235,200 Btu 

per cycle, or 60% of the energy absorbed by the original floor. 

 

A simplified method may assume that the entire thermal mass obtains the oven temperature at 

the end of the cycle.  In this case, the simplified method would under estimate savings to by 

more than half of the actual savings.  Thus, we recommend using the full finite difference 

method to estimate savings from reducing thermal mass if the mass is not highly conductive. 

  

Qabs1 = thick x area x density x cp x (Tfinal – Tinitial) = (8/12) x 100 x 36 x 0.25 x (400-70) = 

198,000 Btu/cycle 

 

Qabs2 = thick x area x density x cp x (Tfinal – Tinitial) = (4/12) x 100 x 36 x 0.25 x (400-70) = 

99,000 Btu/cycle 

 

Qsav = Qabs1 – Qabs 2 = 198,000 Btu/cycle - 99,000 Btu/cycle = 99,000 Btu/cycle 

 

SUMMARY AND CONCLUSIONS 

This paper identified three energy losses in process heating systems: heat loss through hot solid 

surfaces, heat loss from hot liquids exposed to ambient air, and heat loss to thermal mass.  

Energy-savings measures to reduce these losses were discussed, and methods to quantify savings 

were presented.  

 

The method for quantifying savings from insulating hot surfaces explicitly calculates convection 

coefficients and radiation heat loss.  A simplified method, which did not explicitly account for 

these effects, was shown to significantly underestimate heat loss and savings.  Thus, we 

recommend using the full method developed here to estimate savings from insulating hot 

surfaces.   

 

The method presented for quantifying savings from insulating open liquid tanks accounts for 

convection, radiation, and evaporation heat losses.  The method was shown to be comparable to 

experimental results.  For open tanks, evaporation is the dominant type of heat loss; in the 

example shown above, evaporation accounted for about 78% of the total heat loss.  Thus, we 

recommend using the method shown here, or a comparable method, when estimating the savings 

from insulating the surface of hot tanks. 

 

The method presented for quantifying savings from reducing thermal mass in process heat 

systems uses a lumped capacitance model for conductive material and a finite-difference model 

for less-conductive material.  The finite-difference method generates significantly different and 

more accurate results than simply assuming that all thermal mass is heated to the temperature of 

the oven.  Thus, we recommend using this method to estimate savings from reducing thermal 

mass whenever the mass is not highly conductive. 
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Many of these methods have been incorporated into a free public-domain software application, 

HeatSim, which is available from the University of Dayton Industrial Assessment Center at 

www.engr.udayton.edu/udiac.   
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