LSN 4 – Key Terms

- **Variable**: a symbol used to represent a logic quantity
- **Compliment**: the inverse of a variable
- **Literal**: a variable or compliment

\[(A + B + C)D\]
LSN 4 – Boolean Operations

• Boolean addition
 – Sum term:
 • Sum of all literals
 • $A + B, \overline{A} + \overline{B}, A + B + \overline{C} + D$
 • Equal to 1 when one or more literals in the term are 1
 • Equal to 0 only if all literals are 0

• Boolean multiplication
 – Product term
 • Product of all literals
 • $AB, AB, ABCD$
 • Equal to 1 only if each literal is 1
 • Equal to 0 if one or more literals is 0
LSN 4 – Laws of Boolean Algebra

- Communicative laws
 - For addition
 \[A + B = B + A \]

 - For multiplication
 \[AB = BA \]
LSN 4 – Laws of Boolean Algebra

- **Associative laws**
 - For addition
 \[A + (B + C) = (A + B) + C \]
 ![Diagram](A plus B plus C equals A plus B plus C)

 - For multiplication
 \[A(BC) = (AB)C \]
 ![Diagram](A times B times C equals A times B times C)
LSN 4 – Laws of Boolean Algebra

- Distributive laws

\[A(B + C) = AB + AC \]

or

\[AB + AC + AD = A(B + C + D) \]
LSN 4 – Boolean Algebra Rules

- \(A + 0 = A \)

- \(A + 1 = 1 \)

- \(A \cdot 0 = 0 \)
LSN 4 – Boolean Algebra Rules

• \(A \cdot 1 = A \)

\[
\begin{align*}
A = 0 & \quad \text{X} = 0 & \quad A = 1 & \quad \text{X} = 1 \\
1 & \quad & 1 & \\
\end{align*}
\]

• \(A + A = A \)

\[
\begin{align*}
A = 0 & \quad \text{X} = 0 & \quad A = 1 & \quad \text{X} = 1 \\
A = 0 & \quad & A = 1 & \\
\end{align*}
\]

• \(A + \overline{A} = 1 \)

\[
\begin{align*}
A = 0 & \quad \text{X} = 1 & \quad A = 1 & \quad \text{X} = 1 \\
\overline{A} = 1 & \quad & \overline{A} = 0 & \\
\end{align*}
\]
LSN 4 – Boolean Algebra Rules

- \(A \cdot A = A \)

- \(A \cdot \overline{A} = 0 \)

- \(\overline{A} = A \)
LSN 4 – Boolean Algebra Rules

• $A + AB = A$

• $A + \overline{A}B = A + B$

• $(A + B)(A + C) = A + BC$
LSN 4 – Demorgan’s Theorems

• The compliment of a product of literals is equal to the sum of the compliments of the literals

\[\overline{XY} = \overline{X} + \overline{Y} \]
LSN 4 – Demorgan’s Theorems

• The compliment of a sum of literals is equal to the product of the compliments of the literals

\[\overline{X + Y} = \overline{X} \overline{Y} \]

– Can be applied to groupings of literals, not just individual literals

\[(A + B + C)D = (A + B + C) + \overline{D} = \overline{ABC} + \overline{D} \]
LSN 4 – Demorgan’s Theorems

• Example:
 – Exclusive-OR

\[x = A\overline{B} + \overline{A}B \]

 – Find logical expression for Exclusive-NOR
LSN 4 – Demorgan’s Theorems

• Example:
 – Apply DeMorgan’s theorems to
 \[X = ABC + DEF \]

 \[X = \overline{AB} + \overline{CD} + EF \]
LSN 4 – Boolean Analysis of Circuits

• Logic analysis
 – Start at left-most inputs and work towards the final output
 • Create an expression for each gate
 • Example:

![Logic Circuit Diagram]

A
B
C
D
E
X
Use Boolean algebra techniques to simplify the expression and the circuit

Example:

\[X = AB + AC + ABC \]
LSN 4 – Standard Form Expressions

- **Sum of products (SOP)**
 - \(\overline{A}B + \overline{B}C, AC + AB + CD, A + B\overline{C} \)

- **Product of Sums (POS)**
 - \((A + \overline{B})(B + C), (\overline{A} + B)C\)

- **Key terms:**
 - Domain: all variables/compliments present in a Boolean expression
 - \(X = AB + C \)
 - domain = A, B, and C
LSN 4 – Standard Form Expressions

• Standard SOP
 – The domain is completely represented in each product term
 \[X = \bar{A}BC + A\bar{B}C + A\bar{B}\bar{C} \]
 – Create the standard SOP form
 • Recall \(A + \bar{A} = 1 \)
 • Multiply each product by the appropriate \((A + A) \) term to achieve standard SOP form
 • Example:
 \[X = AB + C \]
LSN 4 – Standard Form Expressions

• Standard POS
 – The domain is completely represented in each sum term
 \[X = (A + B + \overline{C})(A + \overline{B} + C) \]
 – Create the standard POS form
 • Recall \(\overline{A}A = 0 \)
 • Add appropriate \(\overline{A}A \) term to each non-standard product term
 • Example:
 \[X = (A + B)C \]
LSN 4 – Expressions & Truth Tables

- SOP expression is equal to 1 only if at least one of the product terms equal 1

\[X = \bar{A}BC + AB\bar{C} + ABC \]

Binary value

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
LSN 4 – Expressions & Truth Tables

- POS expression is equal to 0 only if at least one of the sum terms equal 0

\[X = (A + B + C)(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C}) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Binary value
LSN 4 – Expressions & Truth Tables

- Determine standard SOP and POS forms from truth table
 - Reverse process
 - Where a 1 exists for X, the resulting product terms form the standard SOP expression
 - Where a 0 exists for X, the resulting sum terms form the standard POS expression

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>X</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

SOP POS
LSN 4 – Karnaugh Map

• Representation of all possible inputs and resulting outputs for a logic expression
• Used to simplify a Boolean expression to its minimal form
LSN 4 – Karnaugh Map

- Cells are arranged so only one variable changes between adjacent cells
 - This is referred to as “Cell Adjacency”
LSN 4 – Karnaugh Map SOP Minimization

• Mapping a standard form SOP expression
 – Place a 1 in the Map for each product term
 – Example:
 \[X = \overline{A}BC + ABC + A\overline{B}\overline{C} \]
LSN 4 – Karnaugh Map SOP Minimization

• Mapping a nonstandard SOP expression
 – Recall multiplying product terms by necessary \((A + \bar{A})\) combinations to achieve standard form
 – Numerical expansion method
 • Determine the binary form for each product term
 • Where a binary value is missing, insert a 0 and duplicate the original binary form with a 1 inserted for the missing binary term
 • Example:

\[
X = \bar{A}B + ABC
\]

\[
\begin{array}{cccc}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
\end{array}
\]

- Missing term
- Insert 0
- Duplicate binary form
- Binary expanded numbers

- Insert 1

sschneider@udayton.edu
LSN 4 – Karnaugh Map SOP Minimization

• Minimization process
 – Group all 1s in K-Map
 • Must be in groupings of a power-of-2 size (1, 2, 4, 8, 16)
 • Maximize group size
 • Group only adjacent cells
 • Each 1 in K-Map must belong to at least one group
 – Determine product terms for groupings
 • Composed of variables that occur in only one form within the grouping
 – Sum the resulting product terms
LSN 4 – Karnaugh Map SOP Minimization

- Example:
LSN 4 – Karnaugh Map POS Minimization

• Mapping a standard form expression
 – Place a 0 in the Map for each sum term
 – Example:
 \[X = (A + B + C)(\bar{A} + \bar{B} + C) \quad (A + \bar{B} + \bar{C}) \]
LSN 4 – Karnaugh Map POS Minimization

• Minimization process
 – Group all 0s in K-Map
 • Follow same rules used to group all the 1s for simplification of SOP expressions
 – Determine sum terms for groupings
 – Multiply the resulting sum terms
LSN 4 – Karnaugh Map

• Example:

$$(B + C + \overline{D}) (A + \overline{B} + C + D) (A + \overline{B} + \overline{C} + \overline{D}) (\overline{A} + \overline{B} + C + D) (\overline{A} + \overline{B} + \overline{C} + \overline{D})$$
LSN 4 – Homework

• Reading
 – Chapter 4.1 – 4.4
 – Chapter 4.6 – 4.10

• Assignment – HW5
 – Chapter 4, problems 5(d, g), 6(c, e), 10, 15(a, d), 21(a, c, e)
 • Show all work for credit

• Assignment – HW6
 – Chapter 4, problems 23, 25, 33, 36, 44, 46
 • Show all work for credit