5. \(x' = 2, x = 3, y = -1 \).
\[x^2 + 3y^2 + 2y = 10 \]
\[2x x' + 6y y' + 2y' = 0 \] (Remember that we are differentiating with respect to \(t \), not \(x \)).
\[2(3)(2) + 6(-1) y' + 2y' = 0 \]
\[12 - 6y' + 2y' = 0 \]
\[12 - 4y' = 0 \]
\[y' = 3 \]

19. Let \(s \) be the length of string that has been payed out. Let \(x \) be the distance from the person to the point on the ground below the kite.

\[x^2 + 100^2 = s^2 \]
\[x^2 + 10000 = s^2 \]
\[8 = 125, \quad x = \sqrt{125^2 - 10000} = \frac{1}{15} \sqrt{625^2 - 10000} = 75 \]

\[2 \times x' = 2ss' \]
\[x x' = ss' \]
\[(75)x' = (125)(2) = 250 \]
\[x' = \frac{250}{75} = \frac{10}{3} \]