31. \[\frac{8 - x^3}{2x^2} = \frac{8}{2x^2} - \frac{x^3}{2x^2} = \frac{4}{x^2} - \frac{1}{2} x \]

The oblique asymptote is \(y = -\frac{1}{2} x \).

C4.1

9. \(f(x) = 1 - x^{\frac{2}{3}} \) \[f'(x) = -\frac{2}{3} x^{-\frac{1}{3}} = \frac{-2}{3x^{\frac{1}{3}}} \]

\(f'(x) \) is never 0. It is undefined when \(x = 0 \). Since \(f \) is defined at 0, 0 is a critical number of \(f \), and \(0 \in [-1, 8] \).

\(f(-1) = 1 - 1 = 0 \)

\(f(0) = 1 - 0 = 1 \) \text{ max}

\(f(8) = 1 - 4 = -3 \) \text{ min}

17. \(f(z) = (z^2 - 16)^{\frac{1}{2}} \)

\(f(z) \) is undefined when \(-4 < z < 4\), because then we have \(z^2 - 16 < 0 \).

\[f'(z) = \frac{1}{2} (z^2 - 16)^{-\frac{1}{2}} (2z) = \frac{z}{\sqrt{z^2 - 16}} \]

\(f'(z) \) is undefined when \(-4 \leq z \leq 4\). Of these numbers, \(f \) is defined only at \(\pm 4 \).

In order for \(f'(z) \) to be 0, we must have \(z = 0 \). But \(f \) and \(f' \) are both undefined for \(z = 0 \). Thus the only critical numbers of \(f \) are \(\pm 4 \).