4. Let \(f \) be a function that is continuous on \([-1, 1]\) and differentiable on \((-1, 1)\). Show that if \(f'(x) > 0 \) for all \(x \in (-1, 1) \) then \(f(-1) < f(1) \).

By the Mean Value Theorem, there is \(c \in (-1, 1) \) such that

\[
\frac{f(1) - f(-1)}{1 - (-1)} = f'(c)
\]

so \(f(1) > f(-1) \).

5. Let \(R \) be a rectangle in the first quadrant that has one side on the \(y \)-axis, one side on the \(x \)-axis, and one vertex on the graph of \(y = 9 - x^2 \). Find the largest possible area of \(R \), and the dimensions of \(R \) which result in this area.

Let \(x \) be the length of the side along the \(x \)-axis, and let \(y \) be the length of the side along the \(y \)-axis. \(0 \leq x \leq 3 \)

The area of \(R \) is \(A = xy = x(9-x^2) \) (since \((x,y)\) is on the graph)

\[
A' = 9 - 3x^2 = 3(3-x^2) \quad A' = 0 \text{ when } x = \pm \sqrt{3}
\]

\[
A(0) = 0 \quad A(\sqrt{3}) = 9\sqrt{3} - 3\sqrt{3} = 6\sqrt{3}
\]

The maximum value of \(f \) is \(6\sqrt{3} \). It occurs when \(x = \sqrt{3} \) and \(y = 9 - 3 = 6 \).