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ABSTRACT  

Baselining and benchmarking plant-wide energy use facilitates industrial energy-

efficiency by establishing reference points for comparisons of plant energy consumption.  In this 

paper, baselining refers to establishing reference energy trends in a single facility over a defined 

period of time.   Baselining is useful for tracking the effectiveness of energy-efficiency measures 

and programs over time.  Benchmarking refers to establishing reference energy trends across a 

group of similar facilities.  Benchmarking is useful for identifying “best practice” facilities 

across an industrial sector to establish realistic and achievable energy efficiency goals.   

Unfortunately, using simple historical energy use data for baselines and benchmarks 

introduces uncertainty because of the strong dependence of industrial energy use on production 

levels and local weather conditions, which vary significantly over time and from plant to plant.  

Hence, both baselining and benchmarking efforts benefit from creating models of plant-wide 

energy use as functions of weather and production.  These models can then be adjusted to 

different weather conditions and levels of production to facilitate accurate comparisons. 

This paper describes a simple but accurate method for developing multivariable models 

of electricity and natural gas use as functions of outdoor air temperature and production data, 

which we call Lean Energy Analysis (LEA).  The method incorporates statistical regression 

models to disaggregate energy use into facility, weather-dependent and production dependent 

components.   Graphical analysis of the models reveals that each industrial sector has its own 

unique signature of electricity or gas use.  These energy signatures can be compared within an 

industrial sector to determine best-practice facilities.  This paper will discuss the overall 

approach associated with this method and present case-study energy signatures for several types 

of industrial plants. 

 

Existing Industrial Benchmarking Efforts 

Existing industrial benchmarking efforts include the Long-term Industrial Energy 

Forecasting model (LIEF) and the EPA Energy Star Industrial Energy Performance Indicator 

(EPI).  LIEF evaluates sector-level energy data versus energy prices.  Thus, LIEF facilitates a 

market solution to obtaining best-practice industrial energy use, as opposed to a technical 

solution.  EPI uses plant-level data to facilitate a technical solution to achieving best-practice 

industrial energy use.  The LEA energy signature method does not dispute the LIEF and EPI 

approach, but instead presents an alternate method that yields greater detail into plant energy use.  

We will review the LIEF and EPI methods. 

LIEF uses published aggregated industrial sector data to statistically determine “best 

practice” and average energy use.  LIEF assumes that energy intensity is a function of energy 

prices (Ross, Thimmapuran et al. 1993), and that best-practice energy use will occur when 
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energy prices are high.  Boyd (2003) applied LIEF to several major industrial sectors.  Energy 

intensity difference between best practice and average plant use for electricity and fossil fuels 

were calculated for 1990 and 1998 for these industrial sectors.  Energy use data was obtained 

from Annual Survey of Manufacturing (ASM) and the Manufacturing Energy Consumption 

Survey (MECS), while economic factors were obtained from the Bureau of Labor Statistics 

(BLS).  Unlike EPI and other methods, LIEF benchmarks energy use with data from entire 

industrial sectors, as opposed to plant-level data.  LIEF benchmarking facilitates an economic 

solution to obtaining best-practice industrial energy use.  

EPI uses annual plant level data to create a stochastic frontier regression curve of energy 

use per unit of economic output.  The average plant’s energy intensity is equivalent to the 50
th

 

percentile value of the regression, while a best-practice plant’s energy intensity is equivalent to 

the 75
th

 percentile value of the regression.  Boyd applied this method to breweries and motor 

vehicle assembly plants (Boyd, 2003).  Source data was compiled from the confidential 

Longitudinal Research Database (LRD) maintained by the Center for Economic Studies (CES), 

US Bureau of the Census.  Boyd also used plant data provided by automobile manufacturers.  

EPI assumes the difference between an average and best practice industrial facility is technical, 

while LIEF assumes the difference is based on energy prices. 

EPI’s industrial energy intensity indicators are calculated as simply annual plant-wide 

energy use divided by annual production. As such, this method does not disaggregate types of 

plant energy use.  Non-production facility energy use and space-conditioning energy use are 

confounded with production energy use.  Thus, there is some uncertainty whether an EPI best-

practice facility is exhibiting best-practice production, facility or space-conditioning energy use.  

The LEA energy signature method disaggregates plant energy use into these components. 

The EPA has conducted other benchmarking studies that pre-dated the development of 

the EPI method, but was similar if not the predecessor to the EPI method.  Hicks and Dutrow 

(2001) used this method to quantify average and best-practice for the milk and malt beverage 

industries, using data from the Major Industrial Plant Database (MIPD). 

The methods described above rely on data from the MECS, MIPD and ASM. The 

Department of Energy (DOE) Energy Information Administration (EIA) conducts the MECS 

every three years.  The EIA mails questionnaires to a sample of industrial facilities throughout 

the United States.  The MECS is available to the public.  The 2002 MECS surveyed 15,500 

industrial plants (DOE 2002).  A private company compiles the MIPD database, and charges a 

fee for access to the MIPD database. Data is collected via telephone interviews.  The database 

information includes SIC code, annual electricity and natural gas consumption.  The ASM is 

compiled by the US Census Bureau and lists valued economic output per SIC code. 

  

Industrial Baselining 

 “Baselining” refers to establishing reference energy trends to track the effectiveness of 

energy-efficiency measures and programs over time, by comparison to actual energy use.  Two 

simple baselining methods are predominant in industry today.  The first is graphing time-

dependent trends of energy use.  The second is categorizing energy use by either equipment type, 

commonly referred to as “energy use breakdowns”.  We will briefly overview time-trends and 

energy-use and billing cost breakdowns, and then discuss a more sophisticated method of 
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baselining called Lean Energy Analysis (LEA).  LEA can be conducted quickly and simply with 

the aid of statistical regression analysis software packages. 

Energy Time-Trends 

Trending energy use is generally performed as part of any standard analysis of energy 

billing data.  Typically electrical demand and energy are graphed, as well as natural gas use. The 

importance of graphing energy use data cannot be overstated.  In general, our eyes are much 

better at identifying patterns and trends from graphical information than from tables of numbers.  

For example, the anomaly in Figure 1, a profile of electricity demand in an industrial 

facility, was discovered only after graphing monthly electrical demand data.  In this case, 

electrical demand spiked in the middle of the winter in a production facility located in 

Washington D.C. with a large air conditioning load.  The cause of the demand spike was 

subsequently discovered to be a short scheduled shutdown of steam service, which caused 

electrical resistance heaters throughout the building to operate at full load.  This example 

exhibits the usefulness of creating simple energy time-trend baselines to discover energy use 

anomalies.  

Figure 1. Monthly Electrical Demand 
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Energy Use Breakdowns 

Electrical and thermal energy use can be quickly disaggregated into space conditioning 

and production components using graphical analysis.  Then, electrical and thermal equipment 

energy use can be estimated and calibrated to match the graphical breakdowns.  These quick 

breakdowns help target and screen energy saving opportunities. 

Typically, electrical demand and energy can be segregated into production and air 

conditioning by drawing a line through winter demand/energy.  Electrical demand or energy use 

below the line is for production and electrical demand or energy use above the line is for air 

conditioning.   

Thermal energy use can also be segregated into production and space heating components 

by drawing a line through summer gas use.  Gas use below the line is for production and gas use 

above the line is for space heating.  Figure 2 shows a generic plant’s gas use, where summer use 

is about 310 Mcf/day and the annual average gas use is about 430 Mcf/day, indicating that about 

72% of gas use is for production and about 28% is for space heating.   
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Figure 2. Typical Monthly Gas Use Pattern  
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Finally, energy use by equipment can be estimated based on rated power, fraction loaded, 

and hours of operation.  Initial estimates of electricity and gas use by equipment should be 

calibrated to match the breakdowns of electricity and gas use into production and space 

conditioning components.  Figure 3 shows such a breakdown from a generic plant.   

Figure 3. Example of electricity use breakdown by equipment   
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Base-lining equipment energy use with energy-use breakdowns can prioritize savings 

opportunities by identifying space-conditioning, process and equipment loads.  Energy-use 

breakdowns can also identify equipment loads that are greater than expected.   

 

Lean Energy Analysis (LEA) 

Alternately, statistical regression can be used to create a more sophisticated baseline of 

industrial energy use.  We call the approach of using statistical regression models to baseline 

energy use “Lean Energy Analysis” (LEA). Energy in industrial facilities is used for direct 

production of goods, for space conditioning, and for general facility support such as lighting.  

LEA statistically analyzes plant energy in terms of these major end uses.  LEA uses as few as 60 

data points that are relatively easy for most plants to obtain.  Multivariable change-point models 

of electricity and natural gas use as functions of outdoor air temperature and production data are 

then developed.  
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LEA has many useful functions including: Characterizing industrial energy use into 

facility/production/space-conditioning components, identifying energy savings opportunities, 

budgeting and costing models, baselines for measuring and tracking savings, and quantifying 

savings from productivity. 

Statistical Regression Models.  Statistical models can be developed specifically to describe 

energy use as a function of outdoor air temperature and other influential variables (Kissock et al., 

1998a; Kissock et al., 2003).  The statistical models can be represented by mathematical 

equations. Each independent variable has at least one accompanying coefficient.  If change-

points exist, some independent variables may have more than one coefficient.  Change-points 

represent a change in energy use associated with a specific physical difference in how energy is 

used.  Typical regression independent variables include Toa (F/unit-time), the average outdoor 

temperature during a given period of time, and P (units/time), the production quantity during a 

given period of time. 

Inverse Modeling.  Inverse modeling is the derivation of plant, building or equipment energy 

characteristics from statistical regression models of historical or logged energy data.  For 

example, change-points in temperature-dependent regression models represent heating or cooling 

balance-points of the building.  The coefficient of the production parameter represents energy-

intensity of the manufacturing process, while the slope coefficients of the temperature 

parameters represent cumulative insulating value (R-value) of the building.  Following are 

regression parameters, units and inverse modeling interpretation: 

 

• Yint (energy/unit-time) = the y-intercept = the “facility” component of energy use 

• Xcp (F) = the x change-point = the building heating/cooling balance-point in a 3P/4P model.  

• Xcp1 (F) = the first x change-point = the building heating balance-point in a 5P model 

• Xcp2 (F) = the second x change-point = the building cooling balance-point in a 5P model 

• Ycp (energy/unit-time) = the y change-point = the “facility” component of energy use in a 3P 

or 5P model and the energy use at the Xcp in a 4P model 

• LS (energy/independent variable) = left slope = the energy use per decreasing 

temperature/production unit 

• RS (energy/independent variable) = right slope = the energy use per increasing 

temperature/production unit 

• X2 (energy/production) = typically in a multi-variable regression, the energy use per unit 

production 

 

Other papers (Haberl et al., 2003; Kissock and Seryak, 2004) address the interpretation of 

statistical parameters in more detail. 

Energy Signatures.  Different industrial plants’ energy use are associated with different 

statistical regression models.  However, plants within an industrial sector should all have the 

same basic shape of statistical regression.  We call these shapes “energy signatures”.  Energy 

signatures represent baseline energy use.  Equations can be derived from the parameter 

coefficients and model change-points to predict baseline energy use based on the values of the 

independent variables.   

Data for constructing energy signatures can be readily obtained by most industrial 

facilities.  The manufacturing company typically records monthly electricity and natural gas use, 
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as well as monthly production numbers.  Average outdoor temperatures can be obtained from a 

variety of sources, notably the UD/EPA Average Daily Temperature Archive.  Software 

programs can quickly merge energy consumption and temperature data, and regress the energy 

signatures. 

Energy signatures can serves as baselines to measure energy savings or budget costs.  

Average temperature and production numbers for the given time period are used to calculate 

expected energy use, which can be compared with actual energy use. 

Energy signatures can then be used to create benchmarks for plant-wide energy use.  In 

addition, energy signatures provide benchmarks for facility, production, space-conditioning use 

and heating and cooling balance-points. 

In the following case studies, energy signatures will be presented graphically.  Light-gray 

boxes indicate actual data and a solid line represents the predicted energy use from the statistical 

regression.  Dark-gray boxes represent energy use from a multi-variable regression, and are 

typically slightly offset from the light-gray boxes. 

 

Energy Signature Case Studies 

Note that each energy signature presented below is associated with a separate industrial 

facility. Multiple facilities with 4PH energy signatures are compared in the 4PH section of this 

paper.  The R
2
 and CV-RSME are presented for each regression.  R

2
 values range from 0 to 1, 

higher R
2
 values indicating greater influence of the independent variable.  The CV-RSME ranges 

from 0% to 100%, low values indicating a tighter fit of the regression model to the data.  In 

general, the high R
2
 and low CV-RMSE values suggest that LEA energy signatures are accurate 

models of plant energy use based on production and outdoor temperature. 

2P: Production and Facility Energy Use.  Two-parameter (2P) energy signatures are dependent 

on facility and production energy use, and are typical of industrial facilities with no temperature-

dependent energy use. Equation 1 presents a generic form of the 2P equation, while Equation 2 

presents the equation specific to the energy signature shown in Figure 4.   
 

Eng/day = Yint (eng/day) + RS (eng/unit) x P (unit/day)     (1) 

kWh/day = 288,673 (kWh/day) + 2.07 (kWh/unit) x P (unit/day)    (2) 
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Figure 4: 2P Energy Signature 

 
R

2
 = 0.85  CV-RMSE = 2.4% 

 

3PC-MVR: Production, Facility and Air Conditioning. Three-parameter cooling (3PC) 

energy signatures are dependent on facility and space conditioning energy use, with no 

production or production affects.  Figure 5 shows a 3PC energy signature. In industrial plants, 

energy use should always vary with production.  Thus, 3PC industrial facilities with production-

dependent energy use should be modeled with a multi-variable regression (3PC-MVR).  Figure 6 

shows the same plant in Figure 5, but modeled as a 3PC-MVR instead of a 3PC.  Note the 

greatly improved R
2
 and CV-RMSE values in Figure 6, when production is accounted for.  

Equation 3 presents a generic form of the 3PC-MVR equation, while Equation 4 presents the 

equation specific to the energy signature shown in Figure 6.  

Figure 5: 3PC Energy Signature 

 
R

2
 = 0.67  CV-RMSE = 6.4% 

 

Eng/day = Ycp (eng/day) + RS (eng/F) x (Toa – Xcp)
+
 (F) + X2 (eng/unit) x P (units)      (3) 
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kWh/day = 41,589 (kWh/day) + 361 (kWh/F) x (Toa – 30.7) (F) +2.5 (kWh/unit) x P (units) (4)  

Figure 6: 3PC-MVR Energy Signature  

 
R

2
 = 0.82  CV-RMSE = 5.1% 

 

3PH-MVR: Production, Facility and Space Heating. Three-parameter heating (3PH) energy 

signatures are dependent on facility and space heating energy use, with no production or 

production affects.  Figure 7 shows a 3PH energy signature.  In industrial plants, energy use 

should always vary with production.  Thus, industrial facilities with production-dependent 

energy use and temperature-dependent energy use would be modeled with a multi-variable 

regression (3PH-MVR). Figure 8 shows the same plant in Figure 7, but modeled as a 3PH-MVR 

instead of a 3PH.  Note the greatly improved R
2
 and CV-RMSE values in Figure 8, when 

production is accounted for.  Equation 5 presents a generic form of the 3PH-MVR equation, 

while Equation 6 presents the equation specific to the energy signature shown in Figure 8.   

Figure 7: 3PH Energy Signature 

 
R

2
 = 0.92  CV-RMSE = 7.5% 
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Eng/day = Ycp (eng/day) + LS (eng/F) x (Xcp-Toa)
+
 (F) + X2 (eng/unit) x P (units) (5) 

Mcf/day = 59.6 (Mcf/day) + 9.4 (Mcf/F) x (62.1-Toa) (F) + 0.02 (Mcf/unit) x P (units) (6)  

Figure 8: 3PH-MVR Energy Signature 

 
R

2
 = 0.97  CV-RMSE = 5.1% 

 

4PH-MVR: Temperature Dependent Production and Space Heating.  Four-parameter 

heating (4PH) energy signatures reflect temperature-dependent facility and temperature-

dependent production use.  Figure 9 shows two different 4PH energy signatures.   

In industrial plants, energy use should always vary with production.  Thus, industrial 

facilities with production-dependent energy use and temperature-dependent energy use would be 

modeled with a multi-variable regression (4PH-MVR).  Equations 7 and 8 presents a generic 

form of the 4PH-MVR equation.  For conceptualization purposes, we are only presenting 4PH 

energy signatures here. 4PH-MVR energy signatures are typical of industrial plants with space 

heating and temperature-dependent production.  For example, a heat-treating plant’s gas use is 

temperature-dependent even during the non-heating season, as combustion gas will vary with 

combustion air temperature. 

Figure 9 shows 4PH energy signatures of two different metal plating operations.  

Unfortunately, monthly production numbers were not available for these plants.  However, the 

usefulness of LEA energy signatures for benchmarking is still apparent.  In these figures, we see 

that the heating balance-point for the two facilities is very different, about 40 F for the left plant 

and about 55 F for the right plant.  The ability to inverse-model plant characteristics such as 

building balance-points and energy per unit production or degree F adds incredibly useful details 

to benchmarking efforts. 

 

If Toa > Xcp  

Eng/day = Ycp (eng/day) - RS (eng/F) x (Toa - Xcp)
+
 (F) + X2 (eng/unit) x P (units) (7) 

 

If Toa < Xcp  

Eng/day = Ycp (end/day) + LS (eng/F) x (Xcp – Toa)
+
 (F) + X2 (eng/unit) x P (units) (8) 
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Figure 9: 4PH Energy Signatures 

 
R

2
 = 0.98  CV-RMSE = 4.9% R

2
 = 0.93  CV-RMSE = 22.1% 

4PC-MVR: Temperature Dependent Production and Air Conditioning. Four-parameter 

cooling (4PC) energy signatures are dependent on temperature-dependent facility and 

temperature-dependent production use.  4PC energy signatures are like mirror images of 4PH 

energy signatures. In industrial plants, energy use should always vary with production.  Thus, 

industrial facilities with production-dependent energy use and temperature-dependent energy use 

would be modeled with a multi-variable regression (4PC-MVR).  Equations 9 and 10 present a 

generic form of the 4PC-MVR equation.  For conceptualization purposes, we are only presenting 

a 4PC energy signature here in Figure 10. 4PC-MVR energy signatures are typical of industrial 

plants with air-conditioning and temperature-dependent production.  For example, an ice-cream 

plant’s electricity use is temperature-dependent even during the non-cooling season, as 

compressor energy will vary with outdoor air temperature. 

 

If Toa > Xcp  

Eng/day = Ycp (eng/day) + RS (eng/F) x (Toa - Xcp)
+
 (F) + X2 (eng/unit) x P (units) (9) 

 

If Toa < Xcp  

Eng/day = Ycp (end/day) - LS (eng/F) x (Xcp – Toa)
+
 (F) + X2 (eng/unit) x P (units) (10) 

Figure 10: 4PC Energy Signature 

 



ACEEE Summer Study on Energy in Industry, West Point, NY, July 19-22. 11 

R
2
 = 0.99  CV-RMSE = 1.1% 

5P-MVR: Production, Air Conditioning and Space Heating.  Five-parameter (5P) energy 

signatures are dependent on facility, space conditioning and space heating.  In industrial plants, 

energy use should always vary with production.  Thus, industrial facilities with production-

dependent energy use and temperature-dependent energy use would be modeled with a multi-

variable regression (5P-MVR).  Equation 11 presents a generic form of the 5P-MVR equation.  

For conceptualization purposes, we are only presenting a 5P energy signature here in Figure 11. 

5P-MVR energy signatures are typical of industrial plants with air-conditioning and electric 

space-heating. 

 

Energy (eng/day) = Ycp (eng/day) + LS (eng/F) x (Xcp1 – Toa) (F/day) + RS (eng/F) x (Toa- 

Xcp2) (F/day)           (11) 

Figure 11: 5P-MVR Energy Signature 

 
R

2
 = 0.92  CV-RMSE = 22.4% 

 

Benchmarking Energy Signatures 

Benchmarking industrial sector energy use with LEA energy signatures offers several 

advantages over the LIEF and EPI methods discussed earlier.  Energy signatures provide greater 

detail into the energy use of industrial facilities.  For example, the EPI method, as used by Boyd, 

simply divides plant energy use by production for comparative benchmarking purposes.  This 

quick and simple metric is not merely indicative of production energy, but it is confounded with 

the affects of facility and space-conditioning energy as well.  While EPI is certainly useful, it 

fails to capture whether an average industrial plant has average production, facility or space-

conditioning use.  Therefore, without this information, a plant with best-practice production 

energy use, but worst-practice facility and space-conditioning use, could be viewed as an 

“average” plant.  LEA can pinpoint upfront whether a plant is best practice because of process 

energy use, facility energy use, space-conditioning energy use or a combination of these three. 

In addition to the added detail of plant-wide energy use, LEA energy signatures offer 

several other benchmarking opportunities.  The facility, production and space-conditioning 

components of industrial energy use can all be benchmarked, as well as the building heating and 
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cooling balance points.  The authors have noted that facility energy use is a quantification of 

control inefficiency (Seryak and Kissock, 2005).  As such, benchmarking facility energy use 

would be extremely interesting. 

The adverse aspects of using LEA energy signatures to benchmark energy use lies in data 

collection.  Current surveys only collect annual production and energy use statistics, while a 

survey that would facilitate LEA benchmarking would require monthly production and energy 

use statistics.  As this survey and subsequent database do not currently exist, conducting 

benchmarking studies based on LEA energy signatures would require prohibitive time allocated 

for data collection.  However, as this data is readily available to most industrial facilities, future 

survey and data collection efforts by MECS, MIPD or ASM could incorporate monthly energy 

consumption and production values. 

 

Conclusions 

This paper presented a simple method for developing accurate multivariable regression 

models of energy use (LEA energy signatures) as functions of outdoor air temperature and 

production.  LEA energy signatures for several plants were presented in detail, and discussed as 

more in-depth benchmarking alternatives than the LIEF or EPI methods.  LEA energy signatures 

disaggregate plant energy use into facility, production and space-conditioning uses, while EPI 

confounds these components.  LEA energy signatures also widen benchmarking possibilities 

from plant-wide energy to the facility, production and space-conditioning components, as well as 

building heating and cooling change-points.  Future efforts to gather monthly energy and 

production data, as opposed to annualized data, would result in increased feasibility of using 

LEA energy signatures for benchmarking. 
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