LSN 2
Number Systems

ECT 224 Digital Computer Fundamentals
LSN 2 – Decimal Number System

- Decimal number system has 10 digits (0-9)
- Base 10 weighting system

\[
\ldots 10^5 \ 10^4 \ 10^3 \ 10^2 \ 10^1 \ 10^0 \cdot 10^{-1} \ 10^{-2} \ 10^{-3} \ 10^{-4} \ 10^{-5} \ldots
\]

- Decimal numbers are sums of the weighted digits

\[
25 = (2 \times 10^1) + (5 \times 10^0) \\
= 20 + 5 \\
= 25
\]

833 =
LSN 2 – Binary Number System

- Binary number system has 2 digits (0-1)
- Base 2 weighting system

\[\ldots 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0 \ 2^{-1} \ 2^{-2} \ 2^{-3} \ 2^{-4} \ 2^{-5} \ldots \]
LSN 2 – Converting Binary to Decimal

• Binary numbers are sums of the weighted binary digits (bits)

\[11001 = (1 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) \]
\[= 16 + 8 + 0 + 0 + 1 \]
\[= 25 \]

\[10101 = \]

• Largest decimal number represented by \(n \) bits is \(2^n - 1 \)

\[1111 = 15? \]
\[11111 = 31? \]
LSN 2 – Converting Decimal to Binary

- **Sum of weights**
 - Find closest binary weight to desired decimal number and then work backwards

- **Division by 2 method**
 - Repeated division by 2 until whole number quotient is 0
 - Remainder is binary equivalent
 - Convert decimal 25 to binary:

<table>
<thead>
<tr>
<th>Division</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/2 = 12</td>
<td>1 (LSB)</td>
</tr>
<tr>
<td>12/2 = 6</td>
<td>0</td>
</tr>
<tr>
<td>6/2 = 3</td>
<td>0</td>
</tr>
<tr>
<td>3/2 = 1</td>
<td>1</td>
</tr>
<tr>
<td>1/2 = 0</td>
<td>1 (MSB)</td>
</tr>
</tbody>
</table>

Quotient = 0

25 = 11001
LBN 2 – Converting Decimal to Binary

• Fractional decimal conversion to binary
 – Sum of weights
 • Find closest binary weight to desired decimal number and then work backwards
 – Multiplication by 2 method
 • Repeated multiplication by 2 until desired resolution or until fractional places equal 0
 • Carry is binary equivalent
 • Convert decimal 0.4375 to binary:

\[
\begin{align*}
0.4375 \times 2 &= 0.875 & \text{Cary} = 0 & \text{MSB} \\
0.875 \times 2 &= 1.75 & 1 \\
0.75 \times 2 &= 1.5 & 1 \\
0.5 \times 2 &= 1.0 & 1 \text{ LSB}
\end{align*}
\]

Fractional places = 0

\[0.4375 = .0111\]
LSN 2 – Binary Arithmetic

• Addition

<table>
<thead>
<tr>
<th></th>
<th>Sum</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 + 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 + 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 + 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 + 1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

– Example:

\[
\begin{array}{c}
1010 \\
+0111 \\
\hline
1110 \\
+1111 \\
\end{array}
\]
LSN 2 – Binary Arithmetic

• Subtraction

<table>
<thead>
<tr>
<th>Difference</th>
<th>Borrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 0</td>
<td>0</td>
</tr>
<tr>
<td>1 - 1</td>
<td>0</td>
</tr>
<tr>
<td>1 - 0</td>
<td>1</td>
</tr>
<tr>
<td>10 - 1</td>
<td>1</td>
</tr>
</tbody>
</table>

– Example:

```
  0101
- 0100
  0010
```
LSN 2 – Binary Arithmetic

• **Examples** (2.4 review from book)

\[
\begin{align*}
1101 & \quad + \quad 10111 \\
+ \quad 1010 & \quad + \quad 01101 \\
\hline
1101 & \quad + \quad 0100 \\
- \quad 0100 & \quad - \quad 0111
\end{align*}
\]
Chapter 2 – Signed Binary Numbers

• Signed binary number format

• Sign-Magnitude representation
 – Only sign bit changes between positive and negative numbers
 – Example:

 \[0 \ 0011010 \rightarrow 1 \ 0011010\]
Chapter 2 – Signed Binary Numbers

• 1’s Compliment representation
 – Change all 1’s to 0’s and all 0’s to 1’s
 – Example:

 10110010

 – Negative numbers are the 1’s Compliment of the corresponding positive number
 – Example:

 0 0011010 \Rightarrow 1 1100101
Chapter 2 – Signed Binary Numbers

• 2’s Compliment representation
 – Method 1 → perform the 1’s Compliment and add ‘1’
 – Method 2 → starting with the LSB, retain all bit values up to and including the least significant 1
 • Take the 1’s compliment of remaining bits
 – Example:
 \[\begin{align*} 10110010 & \quad \text{1's Compliment:} \quad 11001111 \\ & \quad \text{2's Compliment:} \quad 11001111 \end{align*} \]
– Negative numbers are the 2’s Compliment of the corresponding positive number
– Example:
 \[\begin{align*} 0011010 & \quad \text{Positive:} \quad 1100110 \\ & \quad \text{2's Compliment:} \quad 11001110 \end{align*} \]
Chapter 2 – Signed Binary Numbers

• Range
 – For n bits there are 2^n combinations
 – With signed binary numbers there is a range from $-(2^{(n-1)})$ to $(2^{(n-1)} - 1)$
 – Example:

 \[n = 8 \quad \text{range is from } -128 \text{ to } 127 \]
LSN 2 – Signed Binary Numbers

• Example
 – Express the number -39 as an 8-bit binary number using
 • Sign-Magnitude
 • 1’s Compliment
 • 2’s Compliment
Signed Binary Numbers

- **Decimal equivalents**
 - **Sign-Magnitude**
 - Sum of weighted binary digits excluding sign bit
 - Adjust sign based upon sign bit
 - **1’s Compliment**
 - Positive numbers:
 - Sum of weighted binary digits
 - Negative numbers:
 - Sum of weighted binary digits with a negative weight being assigned to the sign bit and adding ‘1’
 - Example:
 10010110
LSN 2 – Signed Binary Numbers

– 2’s Compliment
 • All numbers:
 – Sum of weighted binary digits with the negative weight being assigned to the sign bit
 – Example:
 10010110

• Preferred method
 – Single method for both positive and negative numbers
 – Standard binary arithmetic applies
LSN 2 – Floating point numbers

- Contain both integer and fractional parts along with a sign
- Represented by:
 - Mantissa = magnitude
 - Exponent = number of places the “decimal” point is to be moved

![Floating point number representation diagram]

- 8 bits for Exponent
- 23 bits for Mantissa
LSN 2 – Floating point numbers

• Example:
 Represent 4.533×10^3 as a single precision floating point number
LSN 2 – Hexadecimal Numbers

• Base 16 number system
 – 16 digits: 0 1 2 3 4 5 6 7 8 9 a b c d e f
 • Convenient representation since digital systems process binary data in $4n$ groupings
 – Each hexadecimal digit represents a 4-bit binary number
 – $4n$ binary digits (bits) → n hexadecimal numbers
 • Counting:
 0 → f
 10 → 1f
 20 → 2f
 .
 .
 .
 n0 → nf
LSN 2 – Hexadecimal Numbers

• Binary / Hexadecimal conversion
 – Binary → Hexadecimal
 • Break binary number into 4-bit groupings starting at the right and use the associated hexadecimal value
 • Example:

 \[
 \begin{align*}
 0100100111001010 & \quad 1001110010101101
 \end{align*}
 \]
 – Hexadecimal → Binary
 • Replace each hexadecimal number with its associated 4-bit binary number
 • Example:

 \[
 \begin{align*}
 2 \text{ f d } 3_{16} & \quad 3 \text{ e a } 1_{16}
 \end{align*}
 \]
LSN 2 – Hexadecimal Numbers

- Decimal / Hexadecimal conversion
 - Hexadecimal → Decimal
 - Convert hexadecimal to binary then to decimal
 - Example:
 \[a \ e \ 3 \ 4_{16} \]

- Convert hexadecimal directly to decimal by summing the base-16 weighted decimal representation of each digit
 - Example:
 \[a \ e \ 3 \ 4_{16} \]
LSN 2 – Hexadecimal Numbers

• Decimal / Hexadecimal conversion
 – Decimal → Hexadecimal
 • Repeated division by 16
 – Remainder expressed in base 16 is the hexadecimal number from LSD to MSD
 • Example:
 25634
LSN 2 – Digital Codes and Parity

• Binary Coded Decimal (BCD)
 – Expresses each decimal digit with a binary number
 • Used for keypads and x-segment displays
 – 8421 code
 • Only uses the 4-bits representing the decimal numbers 8, 4, 2, and 1 \((2^3, 2^2, 2^1, 2^0)\)
 – 0 1 2 3 4 5 6 7 8 9

 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
 • There are 6 4-bit binary combinations not used (invalid)
 – 10 11 12 13 14 15

 1010 1011 1100 1101 1110 1111
LSN 2 – Digital Codes and Parity

– Decimal → BCD conversion
 • Replace each digit with appropriate BCD code
 • Example:
 8 9 6 1 2

– BCD → Decimal conversion
 • Find decimal conversion for each 4-bit sequence
 • Example:
 10011000000010100
LSN 2 – Digital Codes and Parity

– BCD Addition
 • Perform standard binary addition
 – If sum is greater than 9, add a binary 6 to sum to ensure a valid BCD code is generated
 » Add any carry to next BCD number
 • Example:

 \[
 \begin{array}{c}
 \text{100101110100} \\
 + \text{000100100000} \\
 \hline
 \text{100110001100}
 \end{array}
 \]
LSN 2 – Digital Codes and Parity

• Gray Code
 – Not a signed or arithmetic code
 – Only 1 bit position changes between consecutive numbers
 – Useful in applications where the number of bit changes needs to be limited to help reduce errors

(a) Binary

(b) Gray code
LSN 2 – Digital Codes and Parity

• ASCII Code
 – American Standard Code for Information Interchange
 – Represents 128 characters with an 8-bit binary code
 • MSB is always 0 (only uses 7 LSBs)
LSN 2 – Digital Codes and Parity

• Parity
 – Used for error detection
 • Odd: parity bit is used to create an odd number of 1’s
 • Even: parity bit is used to create an even number of 1’s

<table>
<thead>
<tr>
<th>EVEN PARITY</th>
<th>ODD PARITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>P BCD</td>
<td>P BCD</td>
</tr>
<tr>
<td>0 0000</td>
<td>1 0000</td>
</tr>
<tr>
<td>1 0001</td>
<td>0 0001</td>
</tr>
<tr>
<td>1 0010</td>
<td>0 0010</td>
</tr>
<tr>
<td>0 0011</td>
<td>1 0011</td>
</tr>
<tr>
<td>1 0100</td>
<td>0 0100</td>
</tr>
<tr>
<td>0 0101</td>
<td>1 0101</td>
</tr>
<tr>
<td>0 0110</td>
<td>1 0110</td>
</tr>
<tr>
<td>1 0111</td>
<td>0 0111</td>
</tr>
<tr>
<td>1 1000</td>
<td>0 1000</td>
</tr>
<tr>
<td>0 1001</td>
<td>1 1001</td>
</tr>
</tbody>
</table>
LSN 2 – Homework

• Reading:
 – Chapter 2.1 – 2.6
 – Chapter 2.6 – 2.11

• Problems – HW2
 – Chapter 2, problems 6, 9, 11(a, g), 13(c, f), 15, 16, 21(d,e), 22(g,h), 23, 24, 25, 26, 27, 28
 • Show all work for credit

• Problems – HW3
 – 30, 37(e, f, g), 38(d, e, f), 39(c, d, h), 40, 47(j, k, l), 51(a, d, g, j), 53(c, d, f), 59, 64
 • Show all work for credit

sschneider@udayton.edu